9.已知定义域为是偶函数.并且在 上是增函数.若f(–3)= 0 .则< 0 的解是 ( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

已知定义域为(-∞,0)∪(0,+∞)的偶函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式x·f(x)>0的解集为(    )。

查看答案和解析>>

已知定义域为(0,+)的函数f(x)满足:(1)对任意x(0, +),恒有f(2x)=2f(x)成立;(2)当x(1,2]时,f(x)=2-x。给出结论如下:
①对任意mZ,有f(2m)=0;②函数f(x)的值域为[0,+ );③存在nZ,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在kZ,使得(a,b) (2k,2k+1)”.
其中所有正确结论的序号是(    )。

查看答案和解析>>

已知定义域为(0,+)的函数f(x)满足:(1)对任意x(0, +),恒有f(2x)=2f(x)成立;(2)当x(1,2]时,f(x)=2-x。给出结论如下:
①对任意mZ,有f(2m)=0;②函数f(x)的值域为[0,+ );③存在nZ,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在kZ,使得(a,b) (2k,2k+1)”.
其中所有正确结论的序号是(    )。

查看答案和解析>>

已知定义域为(0,+∞)的函数f(x)满足:
(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;
(2)当x∈(1,2]时f(x)=2-x给出结论如下:
①任意m∈Z,有f(2m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(2n+1)=9;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k-1).
其中所有正确结论的序号是
 

查看答案和解析>>

已知定义域为(0,+∞)的函数f(x)满足:①x>1时,f(x)<0;②f(
1
2
)=1
③对任意的正实数x,y,都有f(xy)=f(x)+f(y)
(1)求证:f(1)=0,f(
1
x
)=-f(x)

(2)求证:f(x)在定义域内为减函数;
(3)求不等式f(2)+f(5-x)≥-2的解集.

查看答案和解析>>


同步练习册答案