22.已知函数=+有如下性质:如果常数>0.那么该函数在0.上是减函数.在.+∞上是增函数. (1)如果函数=+(>0)的值域为6.+∞.求的值, (2)研究函数=+(常数>0)在定义域内的单调性.并说明理由, (3)对函数=+和=+(常数>0)作出推广.使它们都是你所推广的函数的特例. 研究推广后的函数的单调性(只须写出结论.不必证明).并求函数=+(是正整数)在区间[.2]上的最大值和最小值. 南昌市高中新课程方案试验高三复习训练题 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)已知函数有如下性质:如果常数>0,那么该

 

函数在0,上是减函数,在,+∞上是增函数.

(1)如果函数>0)的值域为6,+∞,求的值;

 

(2)研究函数(常数>0)在定义域内的单调性,并说明理由;

 

(3)对函数(常数>0)作出推广,使它们都是你所推广的

 

函数的特例.

(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数是正整数)在区间[,2]上的最大值和最小值(可利用你

 

的研究结论).

 

查看答案和解析>>

(本小题满分14分)已知函数有如下性质:如果常数>0,那么该
函数在0,上是减函数,在,+∞上是增函数.
(1)如果函数>0)的值域为6,+∞,求的值;
(2)研究函数(常数>0)在定义域内的单调性,并说明理由;
(3)对函数(常数>0)作出推广,使它们都是你所推广的
函数的特例.
(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数是正整数)在区间[,2]上的最大值和最小值(可利用你
的研究结论).

查看答案和解析>>

(本小题满分14分)已知函数有如下性质:如果常数>0,那么该
函数在0,上是减函数,在,+∞上是增函数.
(1)如果函数>0)的值域为6,+∞,求的值;
(2)研究函数(常数>0)在定义域内的单调性,并说明理由;
(3)对函数(常数>0)作出推广,使它们都是你所推广的
函数的特例.
(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数是正整数)在区间[,2]上的最大值和最小值(可利用你
的研究结论).

查看答案和解析>>


同步练习册答案