题目列表(包括答案和解析)
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点.
(1)求抛物线的解析式和顶点M的坐标,并在给定的直角坐标系中画出这条抛物线.
(2)若点(x0,y0)在抛物线上,且0≤x0≤4,试写出y0的取值范围.
(3)设平行于y轴的直线x=t交线段BM于点P(点P能与点M重合,不能与点B重合)交x轴于点Q,四边形AQPC的面积为S.
①求S关于t的函数关系式以及自变量t的取值范围;
②求S取得最大值时点P的坐标;
③设四边形OBMC的面积为,试判断是否存在点P,使得S=,若存在,求出点P的坐标;若不存在,请说明理由.
已知抛物线y=ax2+bx+c的定点坐标为(2,4).
(Ⅰ)试用含a的代数式分别表示b,c;
(Ⅱ)若直线y=kx+4(k≠0)与y轴及该抛物线的交点依次为D、E、F,且,其中O为坐标原点,试用含a的代数式表示k;
(Ⅲ)在(Ⅱ)的条件下,若线段EF的长m满足,试确定a的取值范围.
如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B(6,0)两点,交y轴于点C(0,2).
(1)求此抛物线的解析式;
(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y轴于点E、F两点,求劣弧EF的长;
(3)P为此抛物线在第二象限图像上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1∶2两部分.
阅读下列材料:如图,⊙O1和⊙O2外切于点C,AB是⊙O1和⊙O2的外公切线,A、B为切点,求证:AC⊥BC.
证实:过点C作⊙O1和⊙O2的内公切线交AB于D.
∵ DA、DC是⊙O1的切线,∴ DA=DC.
∴ ∠DAC=∠DCA.同理∠DCB=∠DBC.
又∵ ∠DAC+∠DCA+∠DCB+∠DBC=180°,∴ ∠DCA+∠DCB=90°.
即AC⊥BC.
根据上述材料,解答下列问题:
(1)在以上的证实过程中使用了哪些定理?请写出两个定理的名称或内容;
(2)以AB所在直线为x轴,过点C且垂直于AB的直线为y轴建立直角坐标系(如图11).已知A、B两点的坐标为(-4,0)、(1,0),求经过A、B、C三点的抛物线y=ax2+bx+c的函数解析式;
(3)根据(2)中所确定的抛物线,试判定这条抛物线的顶点是否落在两圆的连心O1O2上,并说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com