知识结构及内容: 1几个概念 2一元一次方程 查看更多

 

题目列表(包括答案和解析)

在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:


(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:

       ;②       ;③       ;④       

(2)如果点的坐标为(1,3),那么不等式的解集是     

查看答案和解析>>

[问题情境] 勾股定理是一条古老的数学定理,它有很多证明方法,我国汉代数学家赵爽根据弦图利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”带到其他星球作为地球人与其他星球“人”进行第一次“谈话”的语言。
[定理表述] 请你根据图(1)中的直角三角形叙述勾股定理(用文字及符号语言叙述);
                                        
 
[尝试证明] 以图(1)中的直角三角形为基础可以构造出以a、b为底,以a+b为高的直角梯形如图(2)。请你利用图(2)验证勾股定理;
[知识拓展] 利用图(2)的直角梯形,我们可以证明,其证明步骤如下:
∵BC=a+b,AD=         .
又∵在直角梯形ABCD中有直角腰BC    斜腰AD(填“>”,“<”或“=”),即       

查看答案和解析>>

[问题情境] 勾股定理是一条古老的数学定理,它有很多证明方法,我国汉代数学家赵爽根据弦图利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”带到其他星球作为地球人与其他星球“人”进行第一次“谈话”的语言。

[定理表述] 请你根据图(1)中的直角三角形叙述勾股定理(用文字及符号语言叙述);

                                        

 

[尝试证明] 以图(1)中的直角三角形为基础可以构造出以a、b为底,以a+b为高的直角梯形如图(2)。请你利用图(2)验证勾股定理;

[知识拓展] 利用图(2)的直角梯形,我们可以证明,其证明步骤如下:

∵BC=a+b,AD=         .

又∵在直角梯形ABCD中有直角腰BC    斜腰AD(填“>”,“<”或“=”),即       

 

查看答案和解析>>


同步练习册答案