题目列表(包括答案和解析)
我们做如下的规定:如果一个三角形在运动变化时保持形状和大小不变,则把这样的三角形称为三角形板.
把两块边长为4的等边三角形板ABC和DEF叠放在一起,使三角形板DEF的顶点D与三角形板ABC的AC边中点O重合,把三角形板ABC固定不动,让三角形板DEF绕点O旋转,设射线DE与射线AB相交于点M,射线DF与线段BC相交于点N.
(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△ADM∽△CND.此时,AM·CN=________.
(2)将三角形板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AM·CN的值是否改变?说明你的理由.
(3)在(2)的条件下,设AM=x,两块三角形板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)
AB |
AB |
AB |
OA |
OA |
OA |
OB |
3 |
(本题满分8分)先阅读读短文,再解答短文后面的问题:
在几何学中,通常用点表示位置,用线段的长度表示两点间的距离,用一条射线表示一个方向。在线段的两个端点中(如图),如果我们规定一个顺序:为始点,为终点,我们就说线段具有射线的方向,线段叫做有向线段,记作,线段的长度叫做有向线段的长度(或模),记作。
有向线段包含三个要素:始点、方向和长度,知道了有向线段的始点,它的终点就被方向和长度一确定。解答下列问题:
1.(1)在平面直角坐标系中画出有向线段(有向线段与轴的长度单位相同),,与轴的正半轴的夹角是,且与轴的正半轴的夹角是;
2.(2)若的终点的坐标为(3,),求它的模及它与轴的正半轴的夹角 的度数。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com