1.若二次三项式x2+4x+k在实数范围内可以分解为两个一次式的积.则k的取值范围是 . 查看更多

 

题目列表(包括答案和解析)

下面的四个结论,回答问题.
①x2-3x+2=0的两根为x1=1,x2=2;
②(x-1)(x-2)=0的两根为x1=1,x2=2;
③(x-1)(x-2)=x2-3x+2;
④二次三项式x2-3x+2可分解为(x-1)(x-2).
猜测
若关于x的方程x2+px+q=0的两根为x1=3,x2=-4,则二次三项式x2+px+q可分解为
 

应用在实数范围内分解因式:
(1)2x2-4x+2
(2)
1
3
x2-
2
3
x-1

(3)x2-2x-2

查看答案和解析>>

下面的四个结论,回答问题.
①x2-3x+2=0的两根为x1=1,x2=2;
②(x-1)(x-2)=0的两根为x1=1,x2=2;
③(x-1)(x-2)=x2-3x+2;
④二次三项式x2-3x+2可分解为(x-1)(x-2).
猜测
若关于x的方程x2+px+q=0的两根为x1=3,x2=-4,则二次三项式x2+px+q可分解为______.
应用在实数范围内分解因式:
(1)2x2-4x+2
(2)数学公式
(3)x2-2x-2

查看答案和解析>>

下面的四个结论,回答问题.
①x2-3x+2=0的两根为x1=1,x2=2;
②(x-1)(x-2)=0的两根为x1=1,x2=2;
③(x-1)(x-2)=x2-3x+2;
④二次三项式x2-3x+2可分解为(x-1)(x-2).
猜测
若关于x的方程x2+px+q=0的两根为x1=3,x2=-4,则二次三项式x2+px+q可分解为______.
应用在实数范围内分解因式:
(1)2x2-4x+2
(2)
(3)x2-2x-2

查看答案和解析>>

下面的四个结论,回答问题.
①x2-3x+2=0的两根为x1=1,x2=2;
②(x-1)(x-2)=0的两根为x1=1,x2=2;
③(x-1)(x-2)=x2-3x+2;
④二次三项式x2-3x+2可分解为(x-1)(x-2).
猜测
若关于x的方程x2+px+q=0的两根为x1=3,x2=-4,则二次三项式x2+px+q可分解为______.
应用在实数范围内分解因式:
(1)2x2-4x+2
(2)
(3)x2-2x-2

查看答案和解析>>

下面的四个结论,回答问题.
①x2-3x+2=0的两根为x1=1,x2=2;
②(x-1)(x-2)=0的两根为x1=1,x2=2;
③(x-1)(x-2)=x2-3x+2;
④二次三项式x2-3x+2可分解为(x-1)(x-2).
猜测
若关于x的方程x2+px+q=0的两根为x1=3,x2=-4,则二次三项式x2+px+q可分解为______.
应用在实数范围内分解因式:
(1)2x2-4x+2
(2)
(3)x2-2x-2

查看答案和解析>>


同步练习册答案