操作:将一把三角尺放在边长为1的正方形上.并使它的直角顶点在对角线上滑动.直角的一边始终经过点.另一边与射线相交于点. 探究:设.两点间的距离为. ⑴当点在上时.线段与线段之间有怎样的大小关系?试证明你观察得到的结论. ⑵当点在边上时.设四边形的面积为.求与之间的函数解析式.并写出函数的定义域. ⑶当点在线段上滑动时.是否可能成为等腰三角形?如果可能.指出所有能使成为等腰三角形的点的位置.并求出相应的的值,如果不可能.试说明理由.(图⑷.图⑸.图⑹的的形状.大小相同.图⑷供操作.实验用.图⑸和图⑹备用) 查看更多

 

题目列表(包括答案和解析)

操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.
探究:设A、P两点间的距离为x.
(1)点Q在CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到的结论(如图1);
(2)点Q边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域(如图2);
(3)点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由(如图3).(图4、图5、图6的形状、大小相同,图4供操作、实验用,图5和图6备用).
精英家教网

查看答案和解析>>

操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动(点P与点A不重合),直角的一边始终经过点B,直角的另一边与射线DC相交于点Q.
探究:设A、P两点的距离为x,问当点P在线段AC上滑动时,△PCQ能否成为等腰三角形:
 
(用“能”或“不能”填空).若能,直接写出使△PCQ成为等腰三角形时相应的x的值;若不能,请简要说明理由:
 

查看答案和解析>>

操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线上滑动,直角的一边始终经过B点,另一边与射线DC相交于点Q.设AP=x.
(1)当Q点在CD上时,线段PQ与线段PB的大小关系怎样?并证明你的结论;
(2)当Q在CD上时,设四边形PBCQ面积为y,求y与x之间的函数关系,并写出x的取值范围;
(3)当点P在线段AC上滑动,且Q在DC延长线上时,△PCQ能否为等腰三角形?若能,求出x的值;若不能,说明理由.

查看答案和解析>>

操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.
探究:设A、P两点间的距离为x.
(1)点Q在CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到的结论(如图1);
(2)点Q边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域(如图2);
(3)点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由(如图3).(图4、图5、图6的形状、大小相同,图4供操作、实验用,图5和图6备用).

查看答案和解析>>

操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.
探究:设A、P两点间的距离为x.
(1)点Q在CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到的结论(如图1);
(2)点Q边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域(如图2);
(3)点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由(如图3).(图4、图5、图6的形状、大小相同,图4供操作、实验用,图5和图6备用).

查看答案和解析>>


同步练习册答案