25.如图.正方形ABCD内一点P.使得PA:PB:PC=1:2:3.请利用旋转知识.证明∠APB=135°.(提示:将△ABP绕点B顺时针旋转90°至△BCP′.连结PP′) 查看更多

 

题目列表(包括答案和解析)

如图,正方形ABCD内一点P,使得PA:PB:PC=1:2:3,请利用旋转知识,证明∠APB=135°.(提示:将△ABP绕点B顺时针旋转90°至△BCP′,连接PP′).

查看答案和解析>>

如图,正方形ABCD内一点P,使得PA:PB:PC=1:2:3,请利用旋转知识,证明∠APB=135°.(提示:将△ABP绕点B顺时针旋转90°至△BCP′,连接PP′).

查看答案和解析>>

如图,P是正方形ABCD内一点,PA=a,PB=2a,PC=3a.将△APB绕点B按顺时针方向旋转,使A精英家教网B与BC重合,连接PP′,得到△PBP′.
(1)求证:△PBP′是等腰直角三角形;
(2)猜想△PCP′的形状,并说明理由.

查看答案和解析>>

如图,P是正方形ABCD内一点,PA=a,PB=2a,PC=3a.将△APB绕点B按顺时针方向旋转,使AB与BC重合,连接PP′,得到△PBP′.
(1)求证:△PBP′是等腰直角三角形;
(2)猜想△PCP′的形状,并说明理由.

查看答案和解析>>

如图,P是正方形ABCD内一点,PA=a,PB=2a,PC=3a.将△APB绕点B按顺时针方向旋转,使AB与BC重合,连接PP′,得到△PBP′.
(1)求证:△PBP′是等腰直角三角形;
(2)猜想△PCP′的形状,并说明理由.

查看答案和解析>>


同步练习册答案