题目列表(包括答案和解析)
在解题目:“当x=1949时,求代数式的值”时,聪聪认为x只要任取一个使原式有意义的值代入都有相同结果.你认为他说的有理吗?请说明理由.
①直接开平方法:对于一元二次方程x2=a(a≥0),因为x是a的平方根,所以x=___________,即x1=___________,x2=___________,这种解一元二次方程的方法叫做直接开平方法.
②配方法:将一元二次方程ax2+bx+c=0(a≠0)配成___________的形式后,当b2-4ac___________时,用直接开平方法求出它的根,这种解一元二次方程的方法叫做配方法.
③公式法:应用一元二次方程ax2+bx+c=0(a≠0)的求根公式x=___________(b2-4ac≥0),这种解一元二次方程的方法叫做公式法.
④因式分解法:若一元二次方程ax2+bx+c=0(a≠0)的左边是关于x的二次三项式易于分解成两个关于x的一次因式乘积的形式时,则方程ax2+bx+c=0可变形为___________,分别令两个一次因式等于0,得两个关于x的一次方程___________和___________,通过解这两个一次方程,就可得原方程的解.这种解一元二次方程的方法叫做因式分解法.
阅读与证明:
如图,已知正方形ABCD中,E、F分别是CD、BC上的点,且∠EAF=45°,求证:BF+DE=EF.
分析:证明一条线段等于另两条线段的和,常用“截长法”或“补短法”,将线段BF、DE放在同一直线上,构造出一条与BF+DE相等的线段.如图延长ED至点,使D=BF,连接A,易证△ABF≌△AD,进一步证明△AEF≌△AE,即可得结论.
(1)请你将下面的证明过程补充完整.
证明:延长ED至,使D=BF,
∵四边形ABCD是正方形
∴AB=AD,∠ABF=∠AD=90°,
∴△ABF≌△AD(SAS)
应用与拓展:如图建立平面直角坐标系,使顶点A与坐标原点O重合,边OB、OD分别在x轴、y轴的正半轴上.
(2)设正方形边长OB为30,当E为CD中点时,试问F为BC的几等分点?并求此时F点的坐标;
(3)设正方形边长OB为30,当EF最短时,直接写出直线EF的解析式:________.
如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BO-OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)求直线AB的解析式;
(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式;
(3)在点E从B向O运动的过程中,完成下面问题:
①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;
②当DE经过点O时,请你直接写出t的值.
如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BO-OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)求直线AB的解析式;
(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式(不必写出t的取值范围);
(3)在点E从B向O运动的过程中,完成下面问题:
①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;
②当DE经过点O时,请你直接写出t的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com