24.对于三个数...M{..}表示这三个数的平均数.min{..}表示..这三个数中最小的数.如:M{1.2.3} = .min{ ..} M{ ..}== min{ ..}= 解决下列问题: (1)填空:min{sin30 .cos45 .tan30 }= 若min{}=2则的 取值范围是 ; (2)①若M{}= min { }.那么x= ; ②根据①.你发现结论“若M{..}= min{..}.那么 (填a.b.c大小关 系), ③运用②.填空:若M{ }=min{ }.则= ; (3)在同一直角坐标系中作出函数的图象(不需列表.描 点).通过图象.得出min { }最大值为 . 查看更多

 

题目列表(包括答案和解析)

12、如图(1),一个正方体的三个面上分别写有1、2、3,与它们相对的三个面上依次写有6、5、4.这个正方体的每一条棱处各嵌有一根金属条,每根金属条的质量数(单位:克)等于过该棱的两个面上所写数的平均数.(1)这个正方体各棱上所嵌金属条的质量总和为
42
克.
(2)沿这个正方体的某些棱(连同嵌条)剪开,得到图(2)所示的展开图,其周边棱上金属条质量之和的最小值为
21
克.在图(2)中把这个正方体的六个面上原有的数字写出来(注:写字的这一面是原正方体的外表面).

查看答案和解析>>

对于三个数a、b、c, M{a,b,c}表示这三个数的平均数,min{a,b,c} 表示a、b、c这三个数中最小的数,如:,min{-1,2,3}=-1;M{ -1,2,a}==,min{-1,2,a}=
(1)填空:min{sin3°,cos45°,tan30°}=____;若min{2,2x+2,4-2x}=2,则x的取值范围是________;
(2)①若M{2,x+1,2x}=min{2,x+1,2x},那么x=____;
②根据①,你发现结论“若M{a,b,c}= min{a,b,c},那么____” (填a,b,c大小关系);
③运用②,填空:若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},则x+y=_____;
(3)在同一直角坐标系中作出函数y=x+1,y=(x-1)2,y=2-x的图象(不需列表,描点),通过图象,得出min{x+1,(x-1)2,2-x}最大值为_____。

查看答案和解析>>

让我们一起来探索平面直角坐标系中平行四边形的顶点的坐标之间的关系。

第一步:数轴上两点连线的中点表示的数

自己画一个数轴,如果点A、B分别表示-2、4,则线段AB的中点M表示的数是                。 再试几个,我们发现:

数轴上连结两点的线段的中点所表示的数是这两点所表示数的平均数。

第二步;平面直角坐标系中两点连线的中点的坐标(如图①)

为便于探索,我们在第一象限内取两点A(x1,y1),B(x2,y2),取线段AB的中点M,分别作A、B到x轴的垂线段AE、BF,取EF的中点N,则MN是梯形AEFB的中位线,故MN⊥x轴,利用第一步的结论及梯形中位线的性质,我们可以得到点M的坐标是(                                  )(用x1,y1,x2,y2表示),AEFB是矩形时也可以。我们的结论是:平面直角坐标系中连结两点的线段的中点的横(纵)坐标等于这两点的横(纵)坐标的平均数。

      

          图①                    图②

第三步:平面直角坐标系中平行四边形的顶点坐标之间的关系(如图②)

在平面直角坐标系中画一个平行四边形ABCD,设A(x1,y1),B(x2,y2),C(x3,y3),

D(x4,y4),则其对角线交点Q的坐标可以表示为Q(           ,         ),也可以表示为Q(                       ),经过比较,我们可以分别得出关于x1,x2,x3,x4及,y1,y2,y3,y4的两个等式是                                      。 我们的结论是:平面直角坐标系中平行四边形的对角顶点的横(纵)坐标的              

 

 

查看答案和解析>>

让我们一起来探索平面直角坐标系中平行四边形的顶点的坐标之间的关系。
第一步:数轴上两点连线的中点表示的数
自己画一个数轴,如果点A、B分别表示-2、4,则线段AB的中点M表示的数是                。 再试几个,我们发现:
数轴上连结两点的线段的中点所表示的数是这两点所表示数的平均数。
第二步;平面直角坐标系中两点连线的中点的坐标(如图①)
为便于探索,我们在第一象限内取两点A(x1,y1),B(x2,y2),取线段AB的中点M,分别作A、B到x轴的垂线段AE、BF,取EF的中点N,则MN是梯形AEFB的中位线,故MN⊥x轴,利用第一步的结论及梯形中位线的性质,我们可以得到点M的坐标是(                                  )(用x1,y1,x2,y2表示),AEFB是矩形时也可以。我们的结论是:平面直角坐标系中连结两点的线段的中点的横(纵)坐标等于这两点的横(纵)坐标的平均数。
    
图①                    图②
第三步:平面直角坐标系中平行四边形的顶点坐标之间的关系(如图②)
在平面直角坐标系中画一个平行四边形ABCD,设A(x1,y1),B(x2,y2),C(x3,y3),
D(x4,y4),则其对角线交点Q的坐标可以表示为Q(            ,         ),也可以表示为Q(                       ),经过比较,我们可以分别得出关于x1,x2,x3,x4及,y1,y2,y3,y4的两个等式是                                      。 我们的结论是:平面直角坐标系中平行四边形的对角顶点的横(纵)坐标的              

查看答案和解析>>

让我们一起来探索平面直角坐标系中平行四边形的顶点的坐标之间的关系。
第一步:数轴上两点连线的中点表示的数
自己画一个数轴,如果点A、B分别表示-2、4,则线段AB的中点M表示的数是                。 再试几个,我们发现:
数轴上连结两点的线段的中点所表示的数是这两点所表示数的平均数。
第二步;平面直角坐标系中两点连线的中点的坐标(如图①)
为便于探索,我们在第一象限内取两点A(x1,y1),B(x2,y2),取线段AB的中点M,分别作A、B到x轴的垂线段AE、BF,取EF的中点N,则MN是梯形AEFB的中位线,故MN⊥x轴,利用第一步的结论及梯形中位线的性质,我们可以得到点M的坐标是(                                  )(用x1,y1,x2,y2表示),AEFB是矩形时也可以。我们的结论是:平面直角坐标系中连结两点的线段的中点的横(纵)坐标等于这两点的横(纵)坐标的平均数。
    
图①                    图②
第三步:平面直角坐标系中平行四边形的顶点坐标之间的关系(如图②)
在平面直角坐标系中画一个平行四边形ABCD,设A(x1,y1),B(x2,y2),C(x3,y3),
D(x4,y4),则其对角线交点Q的坐标可以表示为Q(            ,         ),也可以表示为Q(                       ),经过比较,我们可以分别得出关于x1,x2,x3,x4及,y1,y2,y3,y4的两个等式是                                      。 我们的结论是:平面直角坐标系中平行四边形的对角顶点的横(纵)坐标的              

查看答案和解析>>


同步练习册答案