19. 查看更多

 

题目列表(包括答案和解析)

本题分为A、B 两类题,你可从A、B 两类题中任选一题解答即可
(A类):如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.
(1)求四边形AQMP的周长;
(2)写出图中的两对相似三角形(不需证明);
(3)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.
(B类):有人这样证明三角形内角和是180°,如图,D是△ABC内一点,连接AD、BD、CD,他们将△ABC分成了三个小的三角形.因此有:三个小三角形的内角和的和比△ABC的内角和多360°,如果设三角形内角精英家教网和是x,则有:x+x+x=x+360°,易解得x=180°,你认为这个证明正确吗?说说你的理由.

查看答案和解析>>

本题分为A、B 两类题,你可从A、B 两类题中任选一题解答即可
(A类):如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.
(1)求四边形AQMP的周长;
(2)写出图中的两对相似三角形(不需证明);
(3)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.
(B类):有人这样证明三角形内角和是180°,如图,D是△ABC内一点,连接AD、BD、CD,他们将△ABC分成了三个小的三角形.因此有:三个小三角形的内角和的和比△ABC的内角和多360°,如果设三角形内角和是x,则有:x+x+x=x+360°,易解得x=180°,你认为这个证明正确吗?说说你的理由.

查看答案和解析>>

本题分为A、B 两类题,你可从A、B 两类题中任选一题解答即可
(A类):如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.
(1)求四边形AQMP的周长;
(2)写出图中的两对相似三角形(不需证明);
(3)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.
(B类):有人这样证明三角形内角和是180°,如图,D是△ABC内一点,连接AD、BD、CD,他们将△ABC分成了三个小的三角形.因此有:三个小三角形的内角和的和比△ABC的内角和多360°,如果设三角形内角和是x,则有:x+x+x=x+360°,易解得x=180°,你认为这个证明正确吗?说说你的理由.

查看答案和解析>>

22、本题四个矩形的水平方向的边长为a,竖直方向的边长为b.在图(1)中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分);在图(2)中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(阴影部分).
(1)在图(3)中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;
(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1=
ab-b
,S2=
ab-b
,S3=
ab-b
,然后在下面空白处在图(2)和图(3)中任选一个图形说明你求面积的思维过程;
(3)联想与探索:如图(4),在一块矩形草地上,有一条弯曲的柏油路(路的任何地方的水平宽度都是1个单位)请你猜想空白部分表示的草地面积是多少.

查看答案和解析>>

本题为选项做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.
精英家教网
甲:直线l:y=(m-3)x+n-2(m,n为常数)的图象如图1所示,化简:|m-n|-
n24n+4
-|m-1|

乙:已知:如图2,在边长为a的正方形ABCD中,M是边AD的中点,能否在边AB上找到点N(不含A、B),使得△MAN相似?若能,请给出证明;若不能,请说明理由.

查看答案和解析>>


同步练习册答案