探索研究 如图.在直角坐标系中.点为函数在第一象限内的图象上的任一点.点的坐标为.直线过且与轴平行.过作轴的平行线分别交轴.于.连结交轴于.直线交轴于. (1)求证:点为线段的中点, (2)求证:①四边形为平行四边形, ②平行四边形为菱形, (3)除点外.直线与抛物线有无其它公共点?并说明理由. (1)法一:由题可知. .. .························································································· .即为的中点.····································································· 法二:...·························································· 又轴..··············································································· 可知.. .. .·························································································· . 又.四边形为平行四边形.···················································· ②设.轴.则.则. 过作轴.垂足为.在中. . 平行四边形为菱形.··············································································· (3)设直线为.由.得.代入得: 直线为.························ 设直线与抛物线的公共点为.代入直线关系式得: ..解得.得公共点为. 所以直线与抛物线只有一个公共点.············································· 72 如图.在平面直角坐标系中.点.点分别在轴.轴的正半轴上.且满足. (1)求点.点的坐标. (2)若点从点出发.以每秒1个单位的速度沿射线运动.连结.设的面积为.点的运动时间为秒.求与的函数关系式.并写出自变量的取值范围. 的条件下.是否存在点.使以点为顶点的三角形与相似?若存在.请直接写出点的坐标,若不存在.请说明理由. (08黑龙江齐齐哈尔28题解析)解:(1) .··················································································· . 点.点分别在轴.轴的正半轴上 ······························································································· (2)求得························································································· (每个解析式各1分.两个取值范围共1分)························································· (3),,, ···························································································································· 注:本卷中所有题目.若由其它方法得出正确结论.酌情给分. 73如图13.已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C.直线y=-2x-1经过抛物线上一点B(-2,m).且与y轴.直线x=2分别交于点D.E. (1)求m的值及该抛物线对应的函数关系式, (2)求证:① CB=CE ,② D是BE的中点, (3)若P(x.y)是该抛物线上的一个动点.是否存在这样的点P,使得PB=PE,若存在.试求出所有符合条件的点P的坐标,若不存在.请说明理由. (1)∵ 点B(-2,m)在直线y=-2x-1上. ∴ m=-2×(-2)-1=3. ------------ ∴ B ∵ 抛物线经过原点O和点A.对称轴为x=2. ∴ 点A的坐标为(4,0) . 设所求的抛物线对应函数关系式为y=a(x-0)(x-4). -------- 将点B代入上式.得3=a.∴ . ∴ 所求的抛物线对应的函数关系式为.即. (2)①直线y=-2x-1与y轴.直线x=2的交点坐标分别为D E. 过点B作BG∥x轴.与y轴交于F.直线x=2交于G. 则BG⊥直线x=2.BG=4. 在Rt△BGC中.BC=. ∵ CE=5. ∴ CB=CE=5. -------- ②过点E作EH∥x轴.交y轴于H. 则点H的坐标为H. 又点F.D的坐标为F(0,3).D. ∴ FD=DH=4.BF=EH=2.∠BFD=∠EHD=90°. ∴ △DFB≌△DHE (SAS). ∴ BD=DE. 即D是BE的中点. ------------ (3) 存在. ------------ 由于PB=PE.∴ 点P在直线CD上. ∴ 符合条件的点P是直线CD与该抛物线的交点. 设直线CD对应的函数关系式为y=kx+b. 将D C(2,0)代入.得. 解得 . ∴ 直线CD对应的函数关系式为y=x-1. ∵ 动点P的坐标为(x.). ∴ x-1=. ------------ 解得 .. ∴ .. ∴ 符合条件的点P的坐标为(.)或(.).- (注:用其它方法求解参照以上标准给分.) 查看更多

 

题目列表(包括答案和解析)

探索研究

如图,在直角坐标系中,点为函数在第一象限内的图象上的任一点,点的坐标为,直线且与轴平行,过轴的平行线分别交轴,,连结轴于,直线轴于

(1)求证:点为线段的中点;

(2)求证:①四边形为平行四边形;

②平行四边形为菱形;

(3)除点外,直线与抛物线有无其它公共点?并说明理由.

查看答案和解析>>

探索研究
如图,在直角坐标系中,点P为函数在第一象限内的图象上的任一点,点A的坐标为,直线且与x轴平行,过作y轴的平行线分别交x轴,,连结交x轴于H,直线交y轴于R.
(1)求证:点H为线段的中点;
(2)求证:①四边形为平行四边形; ②平行四边形为菱形;
(3)除点P外,直线PH与抛物线有无其它公共点?并说明理由.

查看答案和解析>>

(2012•泉州质检)如图,在直角坐标系中,已知A(0,3)、O(0,0)、C(6,0)、D(3,3),点P从C点出发,沿着折线C-D-A运动到达点A时停止,过C点作直线GC⊥PC,且与过O、P、C三点的⊙M交于点G,连接OP、PG、OD.设点P运动路线的长度为m.
(1)直接写出∠DCO的度数;
(2)当点P在线段CD上运动时,求△OPG的最小面积;
(3)设圆心M的纵坐标为n,试探索:在点P运动的整个过程中,n的取值范围.

查看答案和解析>>

精英家教网如图,在直角坐标系中,O为原点.点A在第一象限,它的纵坐标是横坐标的3倍,反比例函数y=
12x
的图象经过点A,
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与直线y=x平行,求这个一次函数的图象与反比例函数图象的另一个交点的坐标.

查看答案和解析>>

如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=8厘米,AD=24厘米,BC=26厘米;点P从点A开始沿AD边向点D以1厘米/秒的速度移动,点Q从点C开始沿CB边向精英家教网点B以3厘米/秒的速度移动;如果点P、Q分别从点A、C同时出发,当其中一点到达终点时,另一点也随之停止移动,设移动的时间为t秒.
(1)当t为何值时,四边形PQCD为平行四边形?
(2)当t为何值时,四边形PQCD的面积与四边形ABQP的面积相等?
(3)设四边形PQCD的面积为y,求y与t的函数关系式?探索四边形PQCD的面积是否存在最大值?若存在,最大值是多少?若不存在,说明理由?

查看答案和解析>>


同步练习册答案