如图1.已知矩形ABCD的顶点A与点O重合.AD.AB分别在x轴.y轴上.且AD=2.AB=3,抛物线经过坐标原点O和x轴上另一点E(4,0) (1)当x取何值时.该抛物线的最大值是多少? (2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动.同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3).直线AB与该抛物线的交点为N. ① 当时.判断点P是否在直线ME上.并说明理由, ② 以P.N.C.D为顶点的多边形面积是否可能为5.若有可能.求出此时N点的坐标,若无可能.请说明理由. 图1 图2 第28题图 2010年兰州市初中毕业生学业考试试卷 查看更多

 

题目列表(包括答案和解析)

(本题满分11分)

如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.

1.(1)连接GD,求证:△ADG≌△ABE;(2分)

2.(2)连接FC,观察并猜测∠FCN的度数,并说明理由;(3分)

3.(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.(4分)

 

查看答案和解析>>

(本题满分11分)

如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.

1.(1)连接GD,求证:△ADG≌△ABE;(2分)

2.(2)连接FC,观察并猜测∠FCN的度数,并说明理由;(3分)

3.(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.(4分)

 

查看答案和解析>>

(本题满分11分)
如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
小题1:(1)连接GD,求证:△ADG≌△ABE;(2分)
小题2:(2)连接FC,观察并猜测∠FCN的度数,并说明理由;(3分)
小题3:(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.(4分)

查看答案和解析>>

(本题满分11分)如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
① 当时,判断点P是否在直线ME上,并说明理由;
② 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由.

查看答案和解析>>

(本题满分11分)
如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
【小题1】(1)连接GD,求证:△ADG≌△ABE;(2分)
【小题2】(2)连接FC,观察并猜测∠FCN的度数,并说明理由;(3分)
【小题3】(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.(4分)

查看答案和解析>>


同步练习册答案