3.如果考生在解答的中间过程出现计算错误.但并没有改变试题的实质和难度.其后续部分酌情给分.但最多不超过正确解答分数的一半,若出现严重的逻辑错误.后续部分就不再给分. 查看更多

 

题目列表(包括答案和解析)

小明和小亮在学习探索三角形全等时,碰到如下一题:如图1,若AC=AD,BC=BD,则△ACB与△ADB有怎样的关系?
(1)请你帮他们解答,并说明理由.
(2)细心的小明在解答的过程中,发现如果在AB上任取一点E,连接CE、DE,则有CE=DE,你知道为什么吗?(如图2)
(3)小亮在小明说出理由后,提出如果在AB的延长线上任取一点P,也有第2题类似的结论.请你帮他画出图形,并写出结论,不要求说明理由.(如图3)

查看答案和解析>>

现将3只相同的油桶运往外地,为了确保运输安全,这3只油桶须紧贴在一起,于是,爱动脑筋的小青和小银分别想出了自己的处理方法.
小青:“用截面为等边三角形的铁桶将3只油桶紧紧地套住”(如图①).
小银:“用截面为圆的铁桶将3只油桶紧紧地箍住”.(如图②)
精英家教网
假设油桶的外径为2a,铁桶的高度都等于油桶的高度.
(1)试通过计算分析,小青和小银的想法哪一种更省料;
(2)他们的朋友小猴又想出另一种方法:“用孙悟空的金箍棒夹在它们的中间将3只油桶粘住”(如图③),他这一设想能否实现?若能实现,金箍棒的直径是多少最适宜?
精英家教网
(3)你有没有更合理的方法?如果有,请予以说明;
(4)经历这一课题的实践与探索过程,你有什么感受?

查看答案和解析>>

刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).
(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐
 
.(填“不变”、“变大”或“变小”)
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?
问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?
问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由.
请你分别完成上述三个问题的解答过程.
精英家教网

查看答案和解析>>

刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE="4" cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).

(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐      
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?
问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?
问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,
求出AD的长度;如果不存在,请说明理由.
请你分别完成上述三个问题的解答过程.

查看答案和解析>>

刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE="4" cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).

(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐      
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?
问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?
问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,
求出AD的长度;如果不存在,请说明理由.
请你分别完成上述三个问题的解答过程.

查看答案和解析>>


同步练习册答案