5.理解分式的有关概念及其基本性质.掌握分式的加.减.乘.除运算法则.通过类比整式的运算.进一步体验类比思想和化归思想 查看更多

 

题目列表(包括答案和解析)

圆的有关概念:
(1)圆两种定义方式:
(a)在一个平面内线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做
圆心
圆心
.线段OA叫做
半径
半径

(b)圆是所有点到定点O的距离
等于
等于
定长r的点的集合.
(2)弦:连接圆上任意两点的
线段
线段
叫做弦.(弦不一定是直径,直径一定是弦,直径是圆中最长的弦);
(3)弧:圆上任意两点间的部分叫
(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)
(4)等弧:在同圆与等圆中,能够
完全重合
完全重合
的弧叫等弧.
(5)等圆:能够
完全重合
完全重合
的两个圆叫等圆,半径
相等
相等
的两个圆也叫等圆..

查看答案和解析>>

阅读理解题:
我们学习了二次根式的概念及其基本性质,又学习了二次根式的乘法运算法则,下面我们再来思考下面的问题:
(1)计算:
2
2
=
2
2
3
3
=
3
3
12
3
=
6
6
;显然将一个二次根式乘以一个适当的二次根式后结果不再含有根号.因此利用这个性质结合二次根式除法法则、分式基本性质可以化去分母中的根号,使分母中不再含有根号,如:
2
3
=
2
3
3
3
=
6
3

试一试:化简:①
1
12
=
1•
3
12
3
1•
3
12
3
=
3
6
3
6
;②
2
6
=
2
6
6
6
2
6
6
6
=
3
3
3
3

(2)计算:(2﹢
3
)(2-
3
)=
1
1
;(
6
2
)(
6
-
2
)=
4
4
;同样发现相乘的积不再含有根号.想一想:(
7
-3)(
7
+3
7
+3
)使其结果不再含有根号;同样请你仿照(1)的方法将下列二次根式化简:
1
5
-2

查看答案和解析>>

阅读理解题:
我们学习了二次根式的概念及其基本性质,又学习了二次根式的乘法运算法则,下面我们再来思考下面的问题:
(1)计算:数学公式数学公式=______;数学公式数学公式=______;数学公式数学公式=______;显然将一个二次根式乘以一个适当的二次根式后结果不再含有根号.因此利用这个性质结合二次根式除法法则、分式基本性质可以化去分母中的根号,使分母中不再含有根号,如:数学公式=数学公式=数学公式
试一试:化简:①数学公式=______=______;②数学公式=______=______;
(2)计算:(2﹢数学公式)(2-数学公式)=______;(数学公式数学公式)(数学公式-数学公式)=______;同样发现相乘的积不再含有根号.想一想:(数学公式-3)(______)使其结果不再含有根号;同样请你仿照(1)的方法将下列二次根式化简:数学公式

查看答案和解析>>

先阅读理解下面的例题,再按要求解答:
例题:解一元二次不等式x2-9>0.
解:∵x2-9=(x+3)(x-3),
∴(x+3)(x-3)>0.
由有理数的乘法法则“两数相乘,同号得正”,有
(1)
x+3>0
x-3>0
(2)
x+3<0
x-3<0

解不等式组(1),得x>3,
解不等式组(2),得x<-3,
故(x+3)(x-3)>0的解集为x>3或x<-3,
即一元二次不等式x2-9>0的解集为x>3或x<-3.
问题:求分式不等式
5x+1
2x-3
<0
的解集.

查看答案和解析>>

分式的性质及有关运算法则与分数有什么异同?请举例说明
分式的基本性质及运算法则,与分数的运算法则相同,分式分式是复杂的分数分数只是有一个未知数.如
1
x-2
,把x当作数值,式子就是分数.
分式的基本性质及运算法则,与分数的运算法则相同,分式分式是复杂的分数分数只是有一个未知数.如
1
x-2
,把x当作数值,式子就是分数.

查看答案和解析>>


同步练习册答案