下列方程中,有实数根的是 ( )[来 (A);(B);(C);(D). 查看更多

 

题目列表(包括答案和解析)

阅读下列材料:
材料一 据历史资料统计,明以前的洞庭湖区水灾平均83年一次,明代后期平均20年一次。……长江在晚清时期(1840年到1912年),总共浸决30次左右。涝灾以洞庭湖地区、江汉平原、太湖地区等为最巨,一般年份受涝田亩均在千万亩以上。
——摘自龚书铎《中国社会通史》
材料二 人口的大量增加,导致人们赖以生存的土地难以承受,于是,不可避免地出现移民垦荒。……到晚清这种活动规模越来越大,垦殖区域扩大到东北、内蒙古、西北、华南、长江流域等地区。                                 ——摘自龚书铎《中国社会通史》
材料三 洞庭一湖为川黔楚众水之总汇……滨湖居民狃于目前之利,围筑圩田,侵占湖地,而地方官又意存姑息,不行禁止。若湖地渐就湮郁,则夏秋水发之时势必漫衍中决,为泽国田庐之恋,傥或跨州连邑所在淹浸……
——摘自《清高宗圣训》卷131
材料四 南河岁费五六百万金,然实用工程者什不及一,余悉以供官吏之挥霍。河帅宴客,一席所需,有毙三四驼,五十余豚,鹅掌猴脑无数。……骄奢淫逸,一至于此,而于工程方略,无讲求之者。
——摘自《清史幻事本末》卷45
回答:
(1)据材料一,概括明清时期我国洞庭湖地区水灾所呈现的趋势。
(2)根据以上材料,简析洞庭湖地区水灾发生的人为要素。
(3)根据对水灾成因的分析,请你提出根治江湖水患的建议。

查看答案和解析>>

请同学们判断下列各式是否成立:

(1)=2;(2)=3;(3)=4;(4)=3

经过计算可知,(1)、(2)、(3)式是成立的;(4)式是不成立的.这说明在二次根式的化简运算中要特别注意,根号里面的数是不能轻易地放到根号外面来的.

细心的同学可能会想,什么情况下根号里面的数能放到根号外面来呢?(1)、(2)、(3)式的成立仅仅是巧合吗?其中会有什么规律吧?我们来分析一下前三个式子的运算过程:

(1)=2

(2)=3

(3)=4

通过把带分数化成假分数的分数运算和分子开方运算验证了这些式子是成立的.

我们再来观察前三个等式左边根号内分数的特点.在三个带分数2、3、4中:

(1)整数部分与分数部分的分子相等:

2=2,3=3,4=4;

(2)整数部分与分数部分的分母有下列关系:

3=22-1,8=32-1,15=42-1.

根据上面的分析和观察,我们不妨观察5+=5,式子=5是不是也成立?

=5

确实是成立的!

大胆地猜想一下,对于一般的形式a+(a为大于1的整数),式子

=a

还会成立吗?我们来验证一下:

=a

(a为大于1的整数).

太妙啦!我们的猜想是正确的.

那么,下列各式成立吗?

(1)=2;(2)=3;(3)=4;(4)=3

能不能由此得出下面的结论呢?

=a

同学们可能还会不满足,还会有更大胆的猜想!那就试试看吧.不要忘记,猜想成为真理,是要经过严格证明的.

查看答案和解析>>

有一个算式分子都是整数,满足≈1.16,那么你能算出他们的分子依次是哪些数吗?
在我们的教科书中选取了一些具体值并将它们代入要解的一元二次方程中,大致估计出一元二次方程解的范围,再在这个范围内逐步加细赋值,进而逐步估计出一元二次方程的近似解.下面介绍另外一种估计一元二次方程近似解的方法,以方程x2-3x-1=0为例,因为x≠0,所以先将其变形为x=3+,用3+代替x,得x=3+=3+.反复若干次用3+代替x,就得到x=形如上式右边的式子称为连分数.
可以猜想,随着替代次数的不断增加,右式最后的对整个式子的值的影响将越来越小,因此可以根据需要,在适当时候把忽略不计,例如,当忽略x=3+中的时,就得到x=3;当忽略x=3+中的时,就得到x=3+;如此等等,于是可以得到一系列分数;
3,3+,3+,3+,…,即3,=3.333…,≈3.3.=3.303 03…,….
可以发现它们越来越趋于稳定,事实上,这些数越来越近似于方程x2-3x-1=0的正根,而且它的算法也很简单,就是以3为第一个近似值,然后不断地求倒数,再加3而已,在计算机技术极为发达的今天,只要编一个极为简单的程序,计算机就能很快帮你算出它的多个近似值.

查看答案和解析>>

有一个算式分子都是整数,满足
(  )
3
+
(  )
5
+
(  )
7
≈1.16,那么你能算出他们的分子依次是哪些数吗?
在我们的教科书中选取了一些具体值并将它们代入要解的一元二次方程中,大致估计出一元二次方程解的范围,再在这个范围内逐步加细赋值,进而逐步估计出一元二次方程的近似解.下面介绍另外一种估计一元二次方程近似解的方法,以方程x2-3x-1=0为例,因为x≠0,所以先将其变形为x=3+
1
x
,用3+
1
x
代替x,得x=3+
1
x
=3+
1
3+
1
x
.反复若干次用3+
1
x
代替x,就得到x=3+
1
3+
1
3+
1
3+
1
3+
1
x
形如上式右边的式子称为连分数.
可以猜想,随着替代次数的不断增加,右式最后的
1
x
对整个式子的值的影响将越来越小,因此可以根据需要,在适当时候把
1
x
忽略不计,例如,当忽略x=3+
1
x
中的
1
x
时,就得到x=3;当忽略x=3+
1
3+
1
x
中的
1
x
时,就得到x=3+
1
3
;如此等等,于是可以得到一系列分数;
3,3+
1
3
,3+
1
3+
1
3
,3+
1
3+
1
3
1
3
,…,即3,
10
3
=3.333…,
33
10
≈3.3.
109
33
=3.303 03…,….
可以发现它们越来越趋于稳定,事实上,这些数越来越近似于方程x2-3x-1=0的正根,而且它的算法也很简单,就是以3为第一个近似值,然后不断地求倒数,再加3而已,在计算机技术极为发达的今天,只要编一个极为简单的程序,计算机就能很快帮你算出它的多个近似值.

查看答案和解析>>

材料一:在平面直角坐标系中,如果已知A,B两点的坐标为(x1,y1)和(x2,y2),设AB=t,那么我们可以通过构造直角三角形用勾股定理得出结论:(x1-x22+(y1-y22=t2
材料二:根据圆的定义,圆是到定点的距离等于定长的所有点的集合(其中定点为圆心,定长为半径).如果把圆放在平面直角坐标系中,我们设圆心坐标为(a,b),半径为r,圆上任意一点的坐标为(x,y),那么我们可以根据材料一的结论得出:(x-a)2+(y-b)2=r2,这个二元二次方程我们把它定义为圆的方程.比如:以点(3,4)为圆心,4为半径的圆,我们可以用方程(x-3)2+(y-4)2=42来表示.事实上,满足这个方程的任意一个坐标(x,y),都在已知圆上.
认真阅读以上两则材料,回答下列问题:
(1)方程(x-7)2+(y-8)2=81表示的是以
(7,8)
(7,8)
为圆心,
9
9
为半径的圆的方程.
(2)方程x2+y2-2x+2y+1=0表示的是以
(1,-1)
(1,-1)
为圆心,
1
1
为半径的圆的方程; 猜想:若方程x2+y2+Dx+Ey+F=0(其中D,E,F为常数)表示的是一个圆的方程,则D,E,F要满足的条件是
D2+E2-4F>0
D2+E2-4F>0

(3)方程x2+y2=4所表示的圆上的所有点到点(3,4)的最小距离是
3
3
(直接写出结果).

查看答案和解析>>


同步练习册答案