3.如图2-5-10所示.在矩形ABCD中.BD=20.AD>AB.设∠ABD=α.已知sinα是方程25z2-35z+ 12=0的一个实根.点E.F分别是BC.DC上的点.EC+CF=8.设BE=x.△AEF面积等于y. ⑴ 求出y与x之间的函数关系式, ⑵ 当E.F两点在什么位置时y有最小值?并求出这个最小值. 查看更多

 

题目列表(包括答案和解析)

已知:在四边形ABCD中,AB=DC,AC=DB,AD≠BC。求证:四边形ABCD是等腰梯形。

下面是某同学证明这道题的过程:

证明:过D作DE∥AB,交BC于E,如图19-3-10所示,则∠ABC=∠1。①

∵AB=DC,AC=DB,BC=CB,

∴△ABC≌△DCB,②

∴∠ABC=∠DCB,③

∴∠1=∠DCB,④

∴AB=DC=DE,⑤

∴四边形ABED是平行四边形,⑥

∴AD∥BC,⑦

BE=AD,⑧

又∵AD≠BC,∴BE≠B,

∴点E,C是不同的点,DC不平行于AB。⑨

∵AB=DC,

∴四边形ABCD是等腰梯形。⑩

阅读后填空:

(1)上面的证明过程是否有错误?如有,错在第几步?答:_________;

(2)作DE∥AB的目的是__________;

(3)有人认为第⑨步是多余的,你认为它是否多余?为什么?_________;

(4)判断四边形ABED是平行四边形的依据为___________;

(5)判断四这形ABCD是等腰梯形的依据为_____________;

(6)若题设中没有AD≠BC,那么四边形ABCD一定是等腰梯形吗?为什么?

答:_________________。

查看答案和解析>>

有六名学生分成甲、乙两组(每组三个人),分乘两辆出租车同时从学校出发去世博园参观,出发10分钟后有一辆汽车出现故障,接着正常行驶的一辆车先把第一批学生送到世博园再回头接第二批学生,同时第二批学生步行前往.设出发后t分钟时汽车离开学校的路程为s千米,函数关系如图所示,第二批学生步行过程中离开学校的路程与出发时间t的图象如图中折线段AB-BC所示.(假设汽车载人和空载时的速度分别保持不变,学生步行速度不变,学生上精英家教网下车时间忽略不计.)
(1)从学校出发到全体到达世博园共花了
 
分钟;
(2)请解释图中线段BC的实际意义;
(3)为了节省时间,小明提出了一个想法:从故障点开始,在第二批学生步行的同时出租车先把第一批学生送到途中放下,让他们步行,再回头接第二批学生,使得两批学生同时到达博物馆.如果这样,学生在整个步行过程中不能休息,但步行的平均速度就会减少0.04km/min,请问按这种想法能提前多少分钟到达世博园?(假设汽车载人和空载时的速度分别保持不变.)

查看答案和解析>>

精英家教网某班有50名同学,男、女生人数各占一半,在本周操行评定中操行得分情况如图(1)统计表中所示,图(2)是该班本周男生操行得分的条形统计图:
操行分得分 1分 2分 3分 4分 5分
人数 2 4 10 30 4
图(1)
(1)补全统计表和条形统形图;
(2)计算全班同学的操行平均得分;
(3)若要在操行得分为5分的4名同学中选出两名同学作“本周明星”,用画树状图或列表的方法求出选为“本周明星”的正好是一名男同学和一名女同学的概率.

查看答案和解析>>

(本题满分10分)李经理到张家果园里一次性采购一种水果,他俩商定:李经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).

【小题1】⑴如果采购量x满足,求y与x之间的函数关系式;
【小题2】⑵已知张家种植水果的成本是2 800元/吨,李经理的采购量x满足,那么当采购量为多少时,张家在这次买卖中所获的利润w最大?最大利润是多少?

查看答案和解析>>

(本题满分10分)李经理到张家果园里一次性采购一种水果,他俩商定:李经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).

【小题1】⑴如果采购量x满足,求y与x之间的函数关系式;
【小题2】⑵已知张家种植水果的成本是2 800元/吨,李经理的采购量x满足,那么当采购量为多少时,张家在这次买卖中所获的利润w最大?最大利润是多少?

查看答案和解析>>


同步练习册答案