三角形相似的判定和性质 (1)三角形相似的判定方法有 . . .直角三角形全等的判定除了上述方法外.还有 . (2)相似三角形的 相等. 成比例. 等于相似比. 等于相似比的平方. 查看更多

 

题目列表(包括答案和解析)

   如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP、CA,过点P作PD⊥OB于点D.

(1)填空:PD的长为               (用含t的代数式表示);

(2)求点C的坐标(用含t的代数式表示);

(3)在点P从O向A运动的过程中,△PCA能否成为直角三角形?若能,求t的值.若不能,请说明理由;

(4)填空:在点P从O向A运动的过程中,点C运动路线的长为                            

【解析】此题考核相似三角形的判定和性质,旋转的性质

 

查看答案和解析>>

   如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP、CA,过点P作PD⊥OB于点D.

(1)填空:PD的长为                (用含t的代数式表示);

(2)求点C的坐标(用含t的代数式表示);

(3)在点P从O向A运动的过程中,△PCA能否成为直角三角形?若能,求t的值.若不能,请说明理由;

(4)填空:在点P从O向A运动的过程中,点C运动路线的长为                             

【解析】此题考核相似三角形的判定和性质,旋转的性质

 

查看答案和解析>>

八年级数学学习合作小组在学过《图形的相似》这一章后,发现可将相似三角形的定义、判定以及性质拓展到矩形、菱形的相似中去.如:我们可以定义:“长和宽之比相等的矩形是相似矩形.”相似矩形也有以下的性质:相似矩形的对角线之比等于相似比,周长比等于相似比,面积比等于相似比的平方等等.请你参与这个学习小组,一同探索这类问题:
(1)写出判定菱形相似的一种判定方法:若有一组角对应相等(或两组对角线对应成比例),则这两个菱形相似;
(2)如图,将菱形ABCD沿着直线AC向右平移后得到菱形A′B′C′D′,试证明:四边形A′FCE是菱形,且菱形ABCD∽菱形A′FCE;
(3)若AC=
2
,菱形A′FCE的面积是菱形ABCD面积的一半,求平移的距离AA′的长.精英家教网

查看答案和解析>>

某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去.例如,可以定义:“圆心角相等且半径和弧长对应成比例的两个扇形叫做相似扇形”;相似扇形有性质:弧长比等于半径比,面积比等于半径比的平方….请你协助他们探索这个问题.

(1)写出判定扇形相似的一种方法:若__________________________,则两个扇形相似;

(2)有两个圆心角相等的扇形,其中一个半径为a、弧长为m,另一个半径为2a,则它的弧长为________________________;

(3)图(1)是一完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30 cm,现要做一个和它形状相同、面积是它一半的纸扇〔如图(2)〕,求新做纸扇(扇形)的圆心角和半径.

查看答案和解析>>

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.

(1)求证:∠DAF=∠CDE

(2)问△ADF与△DEC相似吗?为什么?

(3)若AB=4,AD=3,AE=3,求AF的长.

【解析】此题考核平行四边形的性质,相似三角形的判定和性质

 

查看答案和解析>>


同步练习册答案