如果x∈.函数y=的定义域是( ). (A){x| 0<x<π} (B){x| <x<π} (C){x| <x<2π} (D){x| <x≤π} 提示:分象限.定符号. 查看更多

 

题目列表(包括答案和解析)

如果x∈(0,2π),函数y的定义域是(  )

A.{x|0<x<π}      B.

C.     D.

 

查看答案和解析>>

已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.

(1)如果函数y=x+(x>0)的值域为[6,+∞),求b的值;

(2)研究函数y=x2(常数c>0)在定义域内的单调性,并说明理由;

(3)对函数y=x+和y=x2(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),

查看答案和解析>>

已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,上是减函数,在,+∞)上是增函数.

(1)如果函数y=x+(x>0)的值域为[6,+∞),求b的值;

(2)研究函数y=x2(常数c>0)在定义域内的单调性,并说明理由;

(3)对函数y=x+和y=x2(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(n是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.

(1)如果函数y=x+(x>0)的值域为[6,+∞),求b的值;

(2)研究函数y=x2(常数c>0)在定义域内的单调性,并说明理由;

(3)对函数y=x+和y=x2(常数a>0)作出推广,使它们都是你所推广的函数的特例.

(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(n是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)>0,且f(x·y)=f(x)+f(y)

(1)求f(1)的值;

(2)证明f(x)在定义域上是增函数;

(3)如果f( 3 )=1,求满足不等式f(x)-f()≥2的x的取值范围.

查看答案和解析>>


同步练习册答案