13.解析:(1)..由根与系数的关系得. 同法得f( (2).证明:f/(x)=而当x时. 2x2-tx-2=2(x-故当x时, f/(x)≥0, 函数f(x)在[上是增函数. (3).证明: , 同理. 又f(两式相加得: 即 而由(1).f( 且f(, . 14(I)当时,, ,又{an}各项均为正数,.数列是等差数列, (II) ,若对于任意的恒成立,则.令,.当时,.又.. 的最大值是. 查看更多

 

题目列表(包括答案和解析)

(2009全国卷Ⅱ文)(本小题满分12分)

已知椭圆C:                    的离心率为      ,过右焦点F的直线l与C相交于A、B

 
            

两点,当l的斜率为1时,坐标原点O到l的距离为

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?

若存在,求出所有的P的坐标与l的方程;若不存在,说明理由。

解析:本题考查解析几何与平面向量知识综合运用能力,第一问直接运用点到直线的距离公式以及椭圆有关关系式计算,第二问利用向量坐标关系及方程的思想,借助根与系数关系解决问题,注意特殊情况的处理。

查看答案和解析>>

(2009全国卷Ⅱ文)(本小题满分12分)

已知椭圆C:                    的离心率为      ,过右焦点F的直线l与C相交于A、B

 
            

两点,当l的斜率为1时,坐标原点O到l的距离为

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?

若存在,求出所有的P的坐标与l的方程;若不存在,说明理由。

解析:本题考查解析几何与平面向量知识综合运用能力,第一问直接运用点到直线的距离公式以及椭圆有关关系式计算,第二问利用向量坐标关系及方程的思想,借助根与系数关系解决问题,注意特殊情况的处理。

查看答案和解析>>

某港口的水深(米)是时间,单位:小时)的函数,下面是每天时间与水深的关系表:

0

3

6

9

12

15

18

21

24

10

13

9.9

7

10

13

10.1

7

10

经过长期观测, 可近似的看成是函数,(本小题满分14分)

(1)根据以上数据,求出的解析式。

(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?

【解析】第一问由表中数据可以看到:水深最大值为13,最小值为7,,

∴A+b=13,   -A+b=7   解得  A=3,  b=10

第二问要想船舶安全,必须深度,即

       

解得: 得到结论。

 

查看答案和解析>>

已知点),过点作抛物线的切线,切点分别为(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆与直线相切,求圆的方程;

(Ⅲ)若直线的方程是,且以点为圆心的圆与直线相切,

求圆面积的最小值.

【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。

中∵直线与曲线相切,且过点,∴,利用求根公式得到结论先求直线的方程,再利用点P到直线的距离为半径,从而得到圆的方程。

(3)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,借助于函数的性质圆面积的最小值

(Ⅰ)由可得,.  ------1分

∵直线与曲线相切,且过点,∴,即

,或, --------------------3分

同理可得:,或----------------4分

,∴. -----------------5分

(Ⅱ)由(Ⅰ)知,,,则的斜率

∴直线的方程为:,又

,即. -----------------7分

∵点到直线的距离即为圆的半径,即,--------------8分

故圆的面积为. --------------------9分

(Ⅲ)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,    ………10分

当且仅当,即时取等号.

故圆面积的最小值

 

查看答案和解析>>

为常数,离心率为的双曲线上的动点到两焦点的距离之和的最小值为,抛物线的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线为负常数)上任意一点向抛物线引两条切线,切点分别为,坐标原点恒在以为直径的圆内,求实数的取值范围。

【解析】第一问中利用由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

第二问中,

故直线的方程为,即

所以,同理可得:

借助于根与系数的关系得到即是方程的两个不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

(Ⅱ)设

故直线的方程为,即

所以,同理可得:

是方程的两个不同的根,所以

由已知易得,即

 

查看答案和解析>>


同步练习册答案