解析: 构造函数f(x)=logax-a-x,∵a>1,显然f(x)是上的增函数,由a-x+logay< a-y+logaxlogax-a-x>logay-a-y,∴x>y>0. 答案: A 查看更多

 

题目列表(包括答案和解析)

先阅读下列不等式的证法,再解决后面的问题:
已知a1,a2∈R,a1+a2=1,求证a12+a22
1
2

证明:构造函数f(x)=(x-a12+(x-a22=2x2-2x+a12+a22
因为对一切x∈R,恒有f(x)≥0,所以△=4-8(a12+a22)≤0,从而得a12+a22
1
2

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.

查看答案和解析>>

请阅读下列材料:
若两个实数a1,a2满足a1+a2=1,则
a
2
1
+
a
2
2
1.
2
证明:构造函数f(x)=(x-a12+(x-a22=2x2-2x+a12+a22,因为对一切实数x,f(x)≥O恒成立,所以△=4-4×2(a12+a22)≤0,即
a
2
1
+
a
•2
2
1
2
根据上述证明方法,若n个实数a1,a2,…,an满足a1+a2+…+an=1时,你能得到的不等式为:
 

查看答案和解析>>

12、已知函数f(x)=2x-1,g(x)=1-x2,构造函数F(x),定义如下:当|f(x)|≥g(x)时,F(x)=|f(x)|,当|f(x)|<g(x)时,F(x)=-g(x),那么F(x)(  )

查看答案和解析>>

已知函数f(x)=2x-1,g(x)=1-x2,构造函数F(x)定义如下:当|f(x)|≥g(x)时,F(x)=|f(x)|;当|f(x)|<g(x)时,F(x)=-g(x),那么F(x)的最小值为
-1
-1

查看答案和解析>>

请阅读下列材料:对命题“若两个正实数a1,a2满足a12+a22=1,那么a1+a2
2
.”证明如下:构造函数f(x)=(x-a12+(x-a22,因为对一切实数x,恒有f(x)≥0,又f(x)=2x2-2(a1+a2)x+1,从而得4(a1+a22-8≤0,所以a1+a2
2
.根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你可以构造函数g(x)=
 
,进一步能得到的结论为
 
.(不必证明)

查看答案和解析>>


同步练习册答案