19.你是否注意到在应用等比数列求前n项和时.需要分类讨论.(时.,时.) 查看更多

 

题目列表(包括答案和解析)

“实系数一元二次方程ax2+bx+c=0有实数解”转化为“△=b2-4ac≥0”,你是否注意到必须a≠0;当a=0时,“方程有解”不能转化为△=b2-4ac≥0.若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?

查看答案和解析>>

人口的增长是当前世界上各国普遍关注的问题.我们经常在报刊上看到关于人口增长的预报,说到本世纪中叶,全世界(或某地区)人口将达到多少亿.你可能注意到不同的报刊对同一时间的人口预报在数字上有较大的区别.你知道他们是如何预测的吗?为什么会有较大的区别呢?

早在1798年,英国经济学家马尔萨斯就提出自然状态下的人口增长模型y=y0·ert,其中t表示时间,y0表示t=0时的人口数,r表示人口的年平均增长率.

下面两个表格是我国两段时期的人口资料,试分别求出这两段时期的人口模型,并进行比较,解释为什么会不同,并预测2010年时我国人口总数.

甲                                 1950—1959

年份

1950

1951

1952

1953

1954

人数(万)

55 196

56 300

57 482

58 796

60 266

年份

1955

1956

1957

1958

1959

人数(万)

61 456

62 828

64 563

65 994

67 207

乙                                 1991—1998

年份

1991

1992

1993

1994

人数(万)

114 333

115 823

117 171

118 517

年份

1995

1996

1997

1998

人数(万)

119 850

121 121

122 389

123 626

查看答案和解析>>

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
(文)对于数列,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为,公差为的无穷等差数列的子数列问题,为此,他取了其中第一项,第三项和第五项.
(1) 若成等比数列,求的值;
(2) 在, 的无穷等差数列中,是否存在无穷子数列,使得数列为等比数列?若存在,请给出数列的通项公式并证明;若不存在,说明理由;
(3) 他在研究过程中猜想了一个命题:“对于首项为正整数,公比为正整数()的无穷等比数  列,总可以找到一个子数列,使得构成等差数列”. 于是,他在数列中任取三项,由的大小关系去判断该命题是否正确. 他将得到什么结论?

查看答案和解析>>

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.

(文)对于数列,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为,公差为的无穷等差数列的子数列问题,为此,他取了其中第一项,第三项和第五项.

(1) 若成等比数列,求的值;

(2) 在, 的无穷等差数列中,是否存在无穷子数列,使得数列为等比数列?若存在,请给出数列的通项公式并证明;若不存在,说明理由;

(3) 他在研究过程中猜想了一个命题:“对于首项为正整数,公比为正整数()的无穷等比数  列,总可以找到一个子数列,使得构成等差数列”. 于是,他在数列中任取三项,由的大小关系去判断该命题是否正确. 他将得到什么结论?

 

查看答案和解析>>

我们已经学过了等差数列,你是否想到过有没有等和数列呢?

(1)类比“等差数列”给出“等和数列”的定义.

(2)探索等和数列{an}的奇数项与偶数项各有什么特点,并加以说明.

(3)在等和数列{an}中,如果a1=a,a2=b,求它的前n项和Sn.?

查看答案和解析>>


同步练习册答案