(17)已知求证对任意 (18)求函数的定义域. (19)已知 (Ⅰ)确定k的值, (Ⅱ)求的最小值及对应的x值. (20)在商店买一种商品.大包装的比小包装的合算.如某种牙膏60克装的每支1.15元. 150克装的每支2.50元.二者单位重量的价格比为1.15∶1.牙膏的价格是由生产牙膏 的成本.包装成本及运输成本等决定的.假设忽略运输成本.并假设生产成本与牙膏(不 包括牙膏皮)重量成正比.包装成本与牙膏壳的表面积成正比.请你确定一支180克装 的牙膏的合理价格(参考数据: (21)已知的图象过点.m∈R.设g(x)= 问是否存在实数p(p<0.使F(x)在 上是减函数.在[―3.0)上是增函数.并证明你的结论. (22)设 (Ⅰ)求的定义域.值域及其反函数 (Ⅱ)设试比较的大 小.并证明对一切自然数n都有 查看更多

 

题目列表(包括答案和解析)

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M,都有f(x)≥M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的下界.已知函数f(x)=(x2-3x+3)•ex,其定义域为[-2,t](t>-2),设f(-2)=m,f(t)=n.
(1)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调递增函数;
(2)试判断m,n的大小,并说明理由;并判断函数f(x)在定义域上是否为有界函数,请说明理由;
(3)求证:对于任意的t>-2,总存在x0∈(-2,t)满足
f′(x0)
ex0
=
2
3
(t-1)2,并确定这样的x0的个数.

查看答案和解析>>

已知定义在R上的奇函数f(x)=x3+bx2+cx+d在x=±1处取得极值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)试证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4成立;
(Ⅲ)若过点P(m,n),(m、n∈R,且|m|<2)可作曲线y=f(x)的三条切线,试求点P对应平面区域的面积.

查看答案和解析>>

已知函数f(x)=px-
p
x
-lnx
g(x)=lnx-
P
x
(1+
e2-2e
P2
)
,其中无理数e=2.17828….
(Ⅰ)若P=0,求证:f(x)>1-x;
(Ⅱ)若在其定义域内f(x)是单调函数,求P的取值范围;
(Ⅲ)对于区间(1,2)中的任意常数P,是否存在x0>0,使f(x0)≤g(x0)成立?若存在,求出符合条件的一个x0;否则说明理由.

查看答案和解析>>

已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图象关于点(a,b)中心对称”.设函数f(x)=
x+1-a
a-x
,定义域为A.
(1)试证明y=f(x)的图象关于点(a,-1)成中心对称;
(2)当x∈[a-2,a-1]时,求证:f(x)∈[-
1
2
, 0]

(3)对于给定的x1∈A,设计构造过程:x2=f(x1),x3=f(x2),…,xn+1=f(xn).如果xi∈A(i=2,3,4…),构造过程将继续下去;如果xi∉A,构造过程将停止.若对任意x1∈A,构造过程都可以无限进行下去,求a的值.

查看答案和解析>>

已知函数f(x)的定义域为(0,+∞),对定义域内的任意x,y都有f(xy)=f(x)+f(y)-3
(1)求f(1)的值;
(2)求证:f(x)+f(
1x
)=6(x>0)

(3)若x>1时,f(x)<3,判断f(x)在其定义域上的单调性,并证明.

查看答案和解析>>


同步练习册答案