22. 已知函数 (R, a,b为实数)有极值.且在处的切线与直线平行. (Ⅰ)求实数a的取值范围, (Ⅱ)是否存在实数a.使得函数的极小值为1.若存在.求出实数a的值,若不存在.请说明理由, (Ⅲ)设.的导数为.令.求证: . 2006年石家庄市高中毕业班第二次模拟考试试卷 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分) 已知函数f (x)=ex-k-x,其中x∈R. (1)当k=0时,若g(x)= 定义域为R,求实数m的取值范围;(2)给出定理:若函数f (x)在[a,b]上连续,且f (a)·f (b)<0,则函数y=f (x)在区间(a,b)内有零点,即存在x0∈(a,b),使f (x0)=0;运用此定理,试判断当k>1时,函数f (x)在(k,2k)内是否存在零点.

查看答案和解析>>

(本小题满分14分) 已知函数f (x)=ex-k-x,其中x∈R. (1)当k=0时,若g(x)= 定义域为R,求实数m的取值范围;(2)给出定理:若函数f (x)在[a,b]上连续,且f (a)·f (b)<0,则函数y=f (x)在区间(a,b)内有零点,即存在x0∈(a,b),使f (x0)=0;运用此定理,试判断当k>1时,函数f (x)在(k,2k)内是否存在零点.

查看答案和解析>>

(本小题满分14分) 已知函数f (x)=ex-k-x,其中x∈R. (1)当k=0时,若g(x)= 定义域为R,求实数m的取值范围;(2)给出定理:若函数f (x)在[a,b]上连续,且f (a)·f (b)<0,则函数y=f (x)在区间(a,b)内有零点,即存在x0∈(a,b),使f (x0)=0;运用此定理,试判断当k>1时,函数f (x)在(k,2k)内是否存在零点.

查看答案和解析>>

(本小题满分14分)

已知是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足:

   (1)求f(0),f(1)的值;

   (2)判断的奇偶性,并证明你的结论;

   (3)若,求数列{un}的前n项的和Sn

 

查看答案和解析>>

(本小题满分14分) 对于函数fx),若存在x0∈R,使fx0)=x0成立, 则称x0fx)的不动点.  已知函数fx)=ax2+(b+1)x+b-1(a≠0)
(1)当a=1,b=-2时,求fx)的不动点;
(2)若对于任意实数b,函数fx)恒有两个相异的不动点,求a的取值范围

查看答案和解析>>


同步练习册答案