题目列表(包括答案和解析)
8. 点在直线:上,若存在过的直线交抛物线于,两点,且,则称点为“点”,那么下列结论中正确的是
A.直线上的所有点都是“点” B.直线上仅有有限个点是“点”
C.直线上的所有点都不是“点” D.直线上有无穷多个点(点不是所有的点)是“点”
直线与抛物线:交于两点,点是抛物线准线上的一点,
记,其中为抛物线的顶点.
(1)当与平行时,________;
(2)给出下列命题:
①,不是等边三角形;
②且,使得与垂直;
③无论点在准线上如何运动,总成立.
其中,所有正确命题的序号是___.
直线与椭圆相交于,两点,为坐标原点.
(Ⅰ)当点的坐标为,且四边形为菱形时,求的长;
(Ⅱ)当点在上且不是的顶点时,证明:四边形不可能为菱形.
直线与抛物线:交于两点,点是抛物线准线上的一点,
记,其中为抛物线的顶点.
(1)当与平行时,________;
(2)给出下列命题:
①,不是等边三角形;
②且,使得与垂直;
③无论点在准线上如何运动,总成立.
其中,所有正确命题的序号是___.
直线与椭圆相交于,两点,为坐标原点.
(Ⅰ)当点的坐标为,且四边形为菱形时,求的长;
(Ⅱ)当点在上且不是的顶点时,证明:四边形不可能为菱形.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com