过椭圆上的动点P引圆的两条切线PA.PB.切点分别为A.B.直线AB与轴.轴分别交于点M.N. (Ⅰ)设P点坐标为.求直线AB的方程, (Ⅱ)求△MON面积的最小值(O为坐标原点). 查看更多

 

题目列表(包括答案和解析)

附加题:如图,过椭圆C:
y2
a2
+
x2
b2
=1
(a>b>0)上一动点P引圆x2+y2=b2的两条切线PA,PB(A,B为切点).直线AB与x轴、y轴分别交于M、N两点.
①已知P点的坐标为(x0,y0),并且x0•y0≠0,试求直线AB的方程;    
②若椭圆的短轴长为8,并且
a2
|OM|2
+
b2
|ON|2
=
25
16
,求椭圆C的方程;
③椭圆C上是否存在P,由P向圆O所引两条切线互相垂直?若存在,求出存在的条件;若不存在,说明理由.

查看答案和解析>>

已知椭圆和圆:,过椭圆上一点引圆的两条切线,切点分别为

(1)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率的值;

     (ⅱ)若椭圆上存在点,使得,求椭圆离心率的取值范围;

(2)设直线轴、轴分别交于点,问当点P在椭圆上运动时,是否为定值?请证明你的结论.

查看答案和解析>>

(本题满分14分)已知椭圆C:=1(a>b>0)的离心率为,短轴一

 

个端点到右焦点的距离为3.

(1)求椭圆C的方程;

(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

 

 

 

查看答案和解析>>

(本题满分14分)已知椭圆C:=1(a>b>0)的离心率为,短轴一
个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

(本题满分14分)

已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为3.

(1)求椭圆C的方程;

(2)过椭圆C上的动点P引圆O:x2+y2=b2的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案