给出,等于已知是的中点; 查看更多

 

题目列表(包括答案和解析)

已知是实系数方程的虚根,记它在直角坐标平面上的对应点为.

   (1)若在直线上,求证:在圆上;

   (2)给定圆),则存在唯一的线段满足:①若在圆上,则在线段上;② 若是线段上一点(非端点),则在圆上. 写出线段的表达式,并说明理由;

   (3)由(2)知线段与圆之间确定了一种对应关系,通过这种对应关系的研究,填写表一(表中是(1)中圆的对应线段).

    表一:

线段与线段的关系

的取值或表达式

所在直线平行于所在直线

所在直线平分线段

线段与线段长度相等

查看答案和解析>>

已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且
d2
d1
=
2
2

(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线l1:x=-
a2
c
、点F(-c,0)、曲线C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,则使等式S22=λS1S3成立的λ的值仍保持不变.请给出你的判断
 
 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

精英家教网给出下列四个命题:
①已知函数y=2sin(x+φ)(0<φ<π)的图象如图所示,则?=
π
6
5
6
π

②已知O、A、B、C是平面内不同的四点,且
OA
OB
OC
,则α+β=1是A、B、C三点共线的充要条件;
③若数列an恒满足
a
2
n+1
a
2
n
=p
(p为正常数,n∈N*),则称数列an是“等方比数列”.根据此定义可以断定:若数列an是“等方比数列”,则它一定是等比数列;
④求解关于变量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到该方程中变量n的所有取值的表达式为n=
1
12
(4k+8)

(k∈N*).
其中正确命题的序号是
 

查看答案和解析>>

给出下列命题:
A.函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称.
B.已知函数y=2sin(ωx+θ)(ω>0,0<θ<π)为偶函数,其图象与直线y=2的交点的横坐标为x1,x2,若|x1-x2|的最小值为π,则ω的值为2,θ的值为
π
2

C.底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
D.若P为双曲线x2-
y2
9
=1上的一点,F1、F2分别为双曲线的左右焦点,且|PF2|=4,则|PF1|=2 或6.
其中正确的命题是
 
(把所有正确的命题的选项都填上)

查看答案和解析>>

15、给出命题:
(1)在空间里,垂直于同一平面的两个平面平行;
(2)设l,m是不同的直线,α是一个平面,若l⊥α,l∥m,则m⊥α;
(3)已知α,β表示两个不同平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的充要条件;
(4)若点P到三角形三个顶点的距离相等,则点P在该三角形所在平面内的射影是该三角形的外心;
(5)a,b是两条异面直线,P为空间一点,过P总可以作一个平面与a,b之一垂直,与另一个平行.
其中正确的命题是
(2)(4)
(只填序号).

查看答案和解析>>


同步练习册答案