向量的概念:向量是既有大小.又有方向的量.向量的大小叫做向量的模.模是非负数.可以比较大小.但由于方向不能比较大小.所以.向量不可以比较大小.这是数量与向量的最大差异. 查看更多

 

题目列表(包括答案和解析)

材料:采访零向量

  W:你好!零向量.我是《数学天地》的一名记者,为了让在校的高中生更好了解你,能不能对你进行一次采访呢?

  零向量:当然可以,我们向量王国随时恭候大家的光临,很乐意接受你的采访,让高中生朋友更加了解我,更好地为他们服务.

  W:好的,那就开始吧!你的名字有什么特殊的含义吗?

  零向量:零向量就是长度为零的向量,它与数字0有着密切的联系,所以用0来表示我.

  W:你与其他向量有什么共同之处呢?

  零向量:既然我是向量王国的一个成员,就具有向量的基本性质,如既有大小又有方向,在进行加、减法运算时满足交换律和结合律,还定义了与实数的积.

  W:你有哪些值得骄傲的特殊荣耀呢?

  零向量:首先,我的方向是不定的,可以与任意的向量平行.其次,我还有其他一些向量所没有的特殊待遇:如我的相反向量仍是零向量;在向量的线性运算中,我与实数0很有相似之处.

  W:你有如此多的荣耀,那么是否还有烦恼之事呢?

  零向量:当然有了,在向量王国还有许多“权利和义务”却大有把我排斥在外之意,如平行向量的定义,向量共线定理,两向量夹角的定义都对我进行了限制.所有这些确实给一些高中生带来了很多苦恼,在此我向大家真诚地说一声:对不起,这不是我的错.但我还是很高兴有这次机会与大家见面.

  W:OK!采访就到这里吧,非常感谢你的合作,再见!

  零向量:Bye!

阅读上面的材料回答下面问题.

应用零向量时应注意哪些问题?

查看答案和解析>>

(2008•普陀区一模)下列有关平面向量分解定理的四个命题中,所有正确命题的序号是
②、③
②、③
.(填写命题所对应的序号即可)
①一个平面内有且只有一对不平行的向量可作为表示该平面所有向量的基;
②一个平面内有无数多对不平行向量可作为表示该平面内所有向量的基;
③平面向量的基向量可能互相垂直;
④一个平面内任一非零向量都可唯一地表示成该平面内三个互不平行向量的线性组合.

查看答案和解析>>

(易向量的概念)下列命题中,正确的是(  )
A、若a∥b,则a与b的方向相同或相反B、若a∥b,b∥c,则a∥cC、若两个单位向量互相平行,则这两个单位向量相等D、若a=b,b=c,则a=c

查看答案和解析>>

下列说法中不正确的是(    )

A.向量的长度与向量长度相等

B.任何一个非零向量都可以平行移动

C.长度不相等而方向相反的两个向量一定是共线向量

D.两个有共同起点且共线的向量其终点必相同

查看答案和解析>>

判断下列各命题,其中假命题的个数为(  )

(1)向量的长度与向量的长度相等;

(2)向量与向量平行,则的方向相同或相反;

(3)两个有共同起点的而且相等的向量,其终点必相同;

(4)两个有共同终点的向量,一定是共线向量;

(5)向量和向量是共线向量,则点A、B、C、D必在同一条直线上;

(6)有向线段就是向量,向量就是有向线段.        

A、2个     B、3个         C、4个       D、5个

 

查看答案和解析>>


同步练习册答案