已知函数其中n∈N*,a为常数. (Ⅰ)当n=2时.求函数f(x)的极值, (Ⅱ)当a=1时.证明:对任意的正整数n,当x≥2时.有f(x)≤x-1. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ax+b,当x∈[a1,b1]时值域为[a2,b2],当x∈[a2,b2]时值域为[a3,b3],当x∈[an-1,bn-1]时值域为[an,bn]…其中a、b为常数,a1=0,b1=1
(1)若a=1,b=2,求数列{an}和{bn}的通项公式.
(2)若a>0,a≠1,要使数列{bn}是公比不为1的等比数列,求b的值.
(3)若a>0,设数列{an}和{bn}的前n项和分别为Sn和Tn,求Tn-Sn的值.

查看答案和解析>>

已知函数f(x)=lnx,g(x)=
3
2
-
a
x
(a为实常数)
(1)当a=1时,求函数φ(x)=f(x)-g(x)在x∈[4,+∞)上的最小值;
(2)若方程e2f(x)=g(x)(其中e=2.71828…)在区间[
1
2
,1]上有解,求实数a的取值范围;
(3)证明:
5
4
n+
1
60
n
k=1
[2f(2k+1)-f(k)-f(k+1)]<2n+1,n∈N*
(参考数据:ln2≈0.6931)

查看答案和解析>>

已知函数f(x)=
1(1-x)n
+aln(x-1)
,其中n∈N*,a为常数.
(Ⅰ)当n=1时,函数f(x)在x=3取得极值,求a值;
(Ⅱ)当a=1时,证明:对任意的正整数n,当x≥2时,有f(x)≤x-1.

查看答案和解析>>

已知函数f(x)=x2+(a-2)x-alnx,其中常数a≠0.
(I)若x=3是函数y=f(x)极值点,求a的值;
(II)当a=-2时,给出两组直线:6x+y+m=0,x-y+n=0,其中m,n为常数,判断这两组直线中是否存在y=f(x)的切线,若存在,求出切线方程;若不存在,请说明理由.
(III)是否存在正实数a,使得关于x的方程f(x)=(3a-2)x+alnx有唯一实数解?若存在,求a的值;若不存在,请说明理由.

查看答案和解析>>

已知 函数f(x)=的图像关于原点对称,其中m,n为实常数。

求m , n的值;

试用单调性的定义证明:f (x) 在区间[-2, 2] 上是单调函数;

[理科做] 当-2≤x≤2 时,不等式恒成立,求实数a的取值范围。

查看答案和解析>>


同步练习册答案