对任意复数.定义. .求相应的复数, (2)若中的为常数.则令.对任意.是否一定有常数使得?这样的是否唯一?说明理由. (3)计算.并设立它们之间的一个等式. (理)由此发现一个一般的等式.并证明之. 查看更多

 

题目列表(包括答案和解析)

对任意复数z=x+yi(x、y∈R),定义g(z)=3x(cosy+isiny).

(1)若g(z)=3,求相应的复数z.

(2)若z=a+bi(a、b∈R)中的a为常数,则令g(z)=f(b),对任意b,是否一定有常数m(m≠0)使得f(b+m)=f(b)?这样的m是否唯一?说明理由.

(3)计算g(2+i),g(-1+i),g(1+i),并设立它们之间的一个等式.

查看答案和解析>>

定义在R上的单调函数f(x)满足f(3)=log23且对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求证f(x)为奇函数;
(2)若f(k•3x)+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

定义在R上的单调增函数f(x),对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)判断函数f(x)的奇偶性;
(2)若f(k•3x)+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

定义在R上的单调函数f(x)满足f(2)=
32
,且对任意x,y∈R都有f(x+y)=f(x)+f(y).
(Ⅰ)求证:f(x)为奇函数;
(Ⅱ)若f(k•3x)+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),则
(1)求f(0);         
(2)证明:f(x)为奇函数;
(3)若f(k•3x)+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>


同步练习册答案