20. 已知x=0是函数的一个极值点.且函数 的图象在处的切线的斜率为2. (Ⅰ)求函数的解析式并求单调区间. (Ⅱ)设.其中.问:对于任意的,方程在区间上是否存在实数根?若存在.请确定实数根的个数.若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分) 已知函数,(x>0).

(1)当0<a<b,且f(a)=f(b)时,求的值  ;   

(2)是否存在实数aba<b),使得函数y=f(x)的定义域、值域都是[ab],若存在,求出ab的值,若不存在,请说明理由.

(3)若存在实数aba<b),使得函数y=f(x)的定义域为 [ab]时,值域为 [mamb],(m≠0),求m的取值范围.

 

 

 

查看答案和解析>>

(本小题满分14分)已知函数,(x>0).
(1)当0<a<b,且f(a)=f(b)时,求的值 ;   
(2)是否存在实数aba<b),使得函数y=f(x)的定义域、值域都是[ab],若存在,求出ab的值,若不存在,请说明理由.
(3)若存在实数aba<b),使得函数y=f(x)的定义域为 [ab]时,值域为 [mamb],(m≠0),求m的取值范围.

查看答案和解析>>

(本小题满分14分)

已知函数f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函数,在(-∞,-2)上为减函数.

(1)求f(x)的表达式;

(2)若当x∈时,不等式f(x)<m恒成立,求实数m的值;

(3)是否存在实数b使得关于x的方程f(x)=x2+x+b在区间[0,2]上恰好有两个相异的实根,若存在,求实数b的取值范围.

查看答案和解析>>

(本小题满分14分)

已知函数f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函数,在(-∞,-2)上为减函数.

(1)求f(x)的表达式;

(2)若当x∈时,不等式f(x)<m恒成立,求实数m的值;

(3)是否存在实数b使得关于x的方程f(x)=x2+x+b在区间[0,2]上恰好有两个相异的实根,若存在,求实数b的取值范围.

查看答案和解析>>

(本小题满分14分)已知函数,(x>0).
(1)当0<a<b,且f(a)=f(b)时,求的值 ;   
(2)是否存在实数aba<b),使得函数y=f(x)的定义域、值域都是[ab],若存在,求出ab的值,若不存在,请说明理由.
(3)若存在实数aba<b),使得函数y=f(x)的定义域为 [ab]时,值域为 [mamb],(m≠0),求m的取值范围.

查看答案和解析>>


同步练习册答案