本讲概念性强.抽象性强.思维方法独特.因此要立足于基础知识.基本方法.基本问题的练习.恰当选取典型例题.构建思维模式.造就思维依托和思维的合理定势1.使用公式P(A)=计算时.确定m.n的数值是关键所在,其计算方法灵活多变,没有固定的模式.可充分利用排列组合知识中的分类计数原理和分步计数原理.必须做到不重复不遗漏 复习这部分内容及解答此类问题首先必须使学生明确判断两点:(1)对于每个随机实验来说.所有可能出现的实验结果数n必须是有限个,(2)出现的所有不同的实验结果数m其可能性大小必须是相同的.只有在同时满足的条件下.运用的古典概型计算公式P(A)=m/n得出的结果才是正确的. 查看更多

 

题目列表(包括答案和解析)

经研究发现,学生的接受能力依赖于老师引入概念和描述总量所用的时间,开始讲题时,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力,x表示提出和讲授概念的时间(单位:分),有以下的公式:
f(x)=
0.1x2+2.6x+43,(0<x≤10)
59,(10<x≤16)
-3x+107,(16<x≤30)

(1)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强呢?
(2)开讲后多少分钟,学生的接受能力最强?能维持多长的时间?
(3)若讲解这道数学题需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲完这道题?

查看答案和解析>>

(2013•莱芜二模)若人们具有较强的节约意识,到饭店就餐时吃光盘子里的东西或打包带走,称为“光盘族”,否则称为“非光盘族”某班几位同学组成研究性学习小组,从某社区[25,55]岁的人群中随机抽取n人进行了一次调查得到如下统计表:
组数 分组 頻数 频率 光盘族占本组的比例
第一组 [25,30﹚ 50 0.05 30%
第二组 [30,35﹚ 100 0.1 30%
第三组 [35,40﹚ 150 0.15 40%
第四组 [40,45﹚ 200 0.2 50%
第五组 [45,50﹚ a b 65%
第六组 [50,55﹚ 200 0.2 60%
(I)求a、b的值并估计本社区[25,55]岁的人群中“光盘族”人数所占的比例;
(Ⅱ)从年龄段在[35,45)的“光盘族”中采用分层抽样法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队,求选取的2名领队分别来自[35,40)与[40,45)两个年龄段的概率.

查看答案和解析>>

(本小题满分12分)

班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机抽取一个容量为8的样本进行分析.

(1)如果按性别比例分层抽样,则样本中男、女生各有多少人;

(2)随机抽取8位同学,数学分数依次为:60,65,70,75,80,85,90,95;

物理成绩依次为:72,77,80,84,88,90,93,95,

①若规定80分(含80分)以上为良好,90分(含90分)以上为优秀,在良好的条件下,求两科均为优秀的概率;

②若这8位同学的数学、物理分数事实上对应下表:

学生编号

1

2

3

4

5

6

7

8

数学分数

60

65

70

75

80

85

90

95[来源:Z&xx&k.Com]

物理分数

72

77

80

84

88

90

93

95

 

 

 

 

根据上表数据可知,变量之间具有较强的线性相关关系,求出的线性回归方程(系数精确到0.01).(参考公式:,其中;参考数据:

 

查看答案和解析>>

(本小题12分)
射手张强在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0.24,0.28,0.19,0.16,0.13.计算这个射手在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率;
(3)射中环数不足8环的概率.

查看答案和解析>>

经研究发现,学生的接受能力依赖于老师引入概念和描述总量所用的时间,开始讲题时,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力,x表示提出和讲授概念的时间(单位:分),有以下的公式:
f(x)=
(1)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强呢?
(2)开讲后多少分钟,学生的接受能力最强?能维持多长的时间?
(3)若讲解这道数学题需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲完这道题?

查看答案和解析>>


同步练习册答案