2.任意角的三角函数定义 任意角的6个三角函数定义的本质是给角这个几何量以代数表达.借助直角坐标系这个工具.把角放进直角坐标系中完成的.由任意角的三角函数定义直接可以得到: (1)三角函数的定义域 (2)三角函数值在四个象限中的符号 (3)同角三角函数的关系 (4)单位圆中的三角函数线:要充分利用三角函数线在记忆三角函数性质与公式以及解决三角函数问题中的作用. 查看更多

 

题目列表(包括答案和解析)

(文)一个函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“三角形函数”.
(1)判断f1(x)=
x
,f2(x)=x,f3(x)=x2中,哪些是“三角形函数”,哪些不是,并说明理由;
(2)如果g(x)是定义在R上的周期函数,且值域为(0,+∞),证明g(x)不是“三角形函数”;
(3)若函数F(x)=sinx,x∈(0,A),当A>
6
时,F(x)不是“三角形函数”.

查看答案和解析>>

(文)一个函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“三角形函数”.
(1)判断f1(x)=
x
,f2(x)=x,f3(x)=x2中,哪些是“三角形函数”,哪些不是,并说明理由;
(2)如果g(x)是定义在R上的周期函数,且值域为(0,+∞),证明g(x)不是“三角形函数”;
(3)若函数F(x)=sinx,x∈(0,A),当A>
6
时,F(x)不是“三角形函数”.

查看答案和解析>>

(理)设α∈(0,π),函数f(x)的定义域为[0,1],且f(0)=0,f(1)=1,对定义域内任意的x,y,满足f(
x+y
2
)=f(x)sinα+(1-sinα)f(y).
(1)试用α表示f(
1
2
),并在f(
1
2
)时求出α的值;
(2)试用α表示f(
1
4
),并求出α的值;
(3)n∈N时,an=
1
2n
,求f(an),并猜测x∈[0,1]时,f(x)的表达式.
(文)已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m)
(1)若点A、B、C不能构成三角形,求实数m应满足的条件.
(2)若△ABC为直角三角形,求m的取值范围.

查看答案和解析>>

(理)设α∈(0,π),函数f(x)的定义域为[0,1],且f(0)=0,f(1)=1,对定义域内任意的x,y,满足f(
x+y
2
)=f(x)sinα+(1-sinα)f(y).
(1)试用α表示f(
1
2
),并在f(
1
2
)时求出α的值;
(2)试用α表示f(
1
4
),并求出α的值;
(3)n∈N时,an=
1
2n
,求f(an),并猜测x∈[0,1]时,f(x)的表达式.
(文)已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m)
(1)若点A、B、C不能构成三角形,求实数m应满足的条件.
(2)若△ABC为直角三角形,求m的取值范围.

查看答案和解析>>


同步练习册答案