设常数.函数 (1)令.求的最小值.并比较的最小值与0的大小, (2)求证:在上是增函数, (3)求证:当时.恒有. 查看更多

 

题目列表(包括答案和解析)

设常数,函数.

(Ⅰ)令,求的最小值,并比较的最小值与零的大小;

(Ⅱ)求证:上是增函数;

(Ⅲ)求证:当时,恒有

查看答案和解析>>

已知定义在实数集上的函数fn(x)=xn,n∈N*,其导函数记为f'n(x),且满足:f2(ξ2)=f2(ξ1)+(ξ2-ξ1)f2[ξ1+
1
λ
(ξ2-ξ1)]
(ξ1≠ξ2),λ,ξ1,ξ2为常数.
(Ⅰ)试求λ的值;
(Ⅱ)设函数f2n-1(x)与fn(1-x)的乘积为函数F(x),求F(x)的极大值与极小值;
(Ⅲ)试讨论关于x的方程
f′n(1+x)
f′n+1(1+x)
=
λn-1
λn+1-1
在区间(0,1)上的实数根的个数.

查看答案和解析>>

已知定义在实数集上的函数fn(x)=xn,n∈N*,其导函数记为fn′(x),且满足:f2′[x1+
1
λ
(x2-x1)]=
f2(x2)-f2(x1)
x2-x1
,λ,x1x2
为常数.
(Ⅰ)试求λ的值;
(Ⅱ)设函数f2n-1(x)与fn(1-x)的乘积为函数F(x),求F(x)的极大值与极小值;
(Ⅲ)若gn(x)=ex•fn(x),试证明关于x的方程
gn(1+x)
gn+1(1+x)
=
λn-1
λn+1-1
在区间(0,2)上有唯一实数根;记此实数根为x(n),求x(n)的最大值.

查看答案和解析>>

(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.
设常数,函数
(1)若=4,求函数的反函数
(2)根据的不同取值,讨论函数的奇偶性,并说明理由.

查看答案和解析>>

设函数,且.

(1)求的值;

(2)若令,求取值范围;

(3)将表示成以)为自变量的函数,并由此,求函数的最大值与最小值及与之对应的x的值.

 

查看答案和解析>>


同步练习册答案