4.已知函数(a>0.且a≠1).其中为常数.如果 是增函数.且存在零点(为的导函数).(Ⅰ)求a的值, (Ⅱ)设A(x1.y1).B(x2.y2)(x1<x2)是函数y=g(x)的图象上两点.( 为的导函数).证明:. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=b•ax(其中a,b为常量,且a>0,a≠1)的图象经过点A(1,6),B(3,24).
(1)求f(x);
(2)若不等式(
1
a
x+(
1
b
x-m≥0在x∈(-∞,1]时恒成立,求实数m的取值范围.

查看答案和解析>>

已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的图象与x轴的交点中,相邻两个交点之间的距离为
π
2
,且图象上一个最低点为M(
3
,-2)

(1)求f(x)的解析式;
(2)求f(x)的单调增区间;

查看答案和解析>>

已知函数f(x)=-
1
2
x2
-2x,g(x)=logax(a>0,且a≠1),其中a为常数.如果h(x)=f(x)+g(x)是增函数,且h′(x)存在零点(h′(x)为h(x)的导函数).
(1)求a的值;
(2)设A(x1,y1)、B(x2,y2)(x1<x2)是函数y=g(x)的图象上两点,g′(x0) =
y2-y1
x2-x1
(g′(x)为g(x)的导函数),证明:x1<x0<x2

查看答案和解析>>

12、已知函数f(x)=mx-lognx(0<m<1<n),正实数a,b,c,满足a>b>c>0,且f(a)f(b)f(c)<0,若存在实数d是函数y=f(x)的一个零点,那么下列四个判断:①;d>1;②d<a;③d>b;④d<b;⑤d>c其中有可能成立的个数为(  )

查看答案和解析>>

已知函数f(x)=ax2+lnx(x>0),g(x)=2x(x∈R),函数h(x)=f(x)-g(x)在区间(0,+∞)上为增函数.
(1)求实数a的取值范围;
(2)设f′(x)、h′(x)分别是f(x)、h(x)的导函数,若方程h′(x)=0在区间(0,+∞)上有唯一解,
①令函数mn(x)=[f′(x)]n-f(xn+
1
xn
),其中n∈N*且n≥2.2函数y=mn(x)在区间(0,+∞)上的最小值;
②求证:对任意的正实数x,都有
n
i=2
1
mi(x)
5
6

查看答案和解析>>


同步练习册答案