题目列表(包括答案和解析)
(本题满分12分) 设函数(),.
(1) 将函数图象向右平移一个单位即可得到函数的图象,试写出的解析式及值域;
(2) 关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(3) 对于函数与定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数与的“分界线”.设,,试探究与是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
(本题满分12分)
设函数.
(Ⅰ) 对于任意实数,求证:;
(Ⅱ) 若方程有且仅有三个实根,求的取值范围.
(本小题满分12分)设函数的定义域为,当时,,且对于任意的实数、,都有.(1)求;(2)试判断函数在上是否存在最小值,若存在,求该最小值;若不存在,说明理由;(3)设数列各项都是正数,且满足, (),又设,,
, 当时,试比较与的大小,并说明理由.
(本小题满分12分)
已知函数f(x)=(x∈R).
⑴当f(1)=1时,求函数f(x)的单调区间;[来源:Zxxk.Com]
⑵设关于x的方程f(x)=的两个实根为x1,x2 ,且-1≤a≤1,求|x1-x2|的最大值;
⑶在(2)的条件下,若对于[-1,1]上的任意实数t,不等式m2+tm+1≥|x1-x2|恒成立,求实数m的取值范围.
(本小题满分12分)
设函数的单调减区间是(1,2)
⑴求的解析式;
⑵若对任意的,关于的不等式在
时有解,求实数的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com