(一)主要知识: 1.平面向量坐标的概念, 2.用向量的坐标表示向量加法.减法.数乘运算和平行等等, 3.会利用向量坐标的定义求向量的坐标或点的坐标及动点的轨迹问题. 查看更多

 

题目列表(包括答案和解析)

(2012•枣庄一模)给定两个长度为1的平面向量
OA
OB
,它们的夹角为120°,如图所示,点C在以O为圆心的圆弧
AB
上变动.若
OC
=x
OA
+y
OB
(x,y∈R),则x-y的最大值是(  )

查看答案和解析>>

精英家教网 如图,给定两个长度为1的平面向量
OA
OB
,它们的夹角为
3
,点C是以O为圆心的圆弧
AB
上的一个动点,且
OC
=x
OA
+y
OB
(x,y∈
.
R-

(Ⅰ)设∠AOC=θ,写出x,y关于θ的函数解析式并求定义域;
(Ⅱ)求x+y的取值范围.

查看答案和解析>>

精英家教网给定两个长度为1的平面向量
OA
OB
,它们的夹角为90°.如图所示,点C在以O为圆心的圆弧
AB
上变动,若
OC
=x
OA
+y
OB
,其中x,y∈R,则xy的范围是
 

查看答案和解析>>

(2013•牡丹江一模)下列命题中,正确的是
(1)(2)(3)
(1)(2)(3)

(1)平面向量
a
b
的夹角为60°,
a
=(2,0)
|
b
|=1
,则|
a
+
b
|
=
7

(2)在△ABC中,A,B,C的对边分别为a,b,c,若acosC,bcosB,ccosA成等差数列则B=
π
3

(3)O是△ABC所在平面上一定点,动点P满足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
)
,λ∈(0,+∞),则直线AP一定通过△ABC的内心
(4)设函数f(x)=
x-[x],x≥0
f(x+1),x<0
其中[x]表示不超过x的最大整数,如[-1.3]=-2,[1.3]=1,则函数y=f(x)-
1
4
x-
1
4
不同零点的个数2个.

查看答案和解析>>

给定两个长度为1的平面向量
OA 
OB 
,它们的夹角θ=60°,如图所示,点C在以O为圆心的圆弧
AB
上变动.若
OC
=x
OA
+y
OB
,其中x,y∈R,则x+y的最大值是
4
3
3
4
3
3

查看答案和解析>>


同步练习册答案