题目列表(包括答案和解析)
|
如图,已知中心在原点O、焦点在x轴上的椭圆T过点M(2,1),离心率为;抛物线C顶点在原点,对称轴为x轴且过点M.
(Ⅰ)当直线l0经过椭圆T在左焦点且平行于OM时,求直线l0的方程;
(Ⅱ)若斜率为的直线l不过点M,与抛物线C交于A,B两个不同的点,求证:直线MA,MB与x轴总围成等腰三角形.
(本小题满分12分)
如图,设抛物线C1:的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率的椭圆C2与抛物线C1在x轴上方的交点为P。
当m = 1时,求椭圆C2的方程;
当△PF1F2的边长恰好是三个连续的自然数时,求抛物线方程;此时设⊙C1、⊙C2……⊙Cn是圆心在上的一系列圆,它们的圆心纵坐标分别为a1,a2……an,已知a1 = 6,a1 > a2 >……> an > 0,又⊙Ck(k = 1,2,…,n)都与y轴相切,且顺次逐个相邻外切,求数列{an}的通项公式.
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com