例1.已知是等比数列.公比为.设(其中).且.如果存在.求公比的取值范围. 解:由题意.. ∴.如果存在.则或. ∴或.故且. 例2.(1)求多项式展开式各项系数和. (2)多项式展开式中的偶次幂各项系数和与奇次幂各项系数和各是多少? 解:(1)设 . 其各项系数和为. 又∵. ∴各项系数和为. (2)设. ∴..故.. ∴展开式中的偶次幂各项系数和为1.奇次幂各项系数和为-1. 例3.证明:(1), (2), (3),(4) 由(i)知 小结: 查看更多

 

题目列表(包括答案和解析)

设等比数列{an}的前n项和为Sn,已知an+1=2Sn+2(n∈N+)
(1)求数列{an}通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列.
(ⅰ)求证:
1
d1
+
1
d2
+
1
d3
+…+
1
dn
15
16
(n∈N+)

(ⅱ)在数列{dn}中是否存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列.

查看答案和解析>>

设等比数列{an}的前n项和为Sn,已知数学公式
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

设等比数列{an}的前n项和为Sn,已知an+1=2Sn+2(n∈N*)
(1)求数列{an}的通项公式;
(2)在anan+1(n∈N*)之间插入n个1,构成如下的新数列:a1,1,a2,1,1,a3,1,1,1,a4,…,求这个数列的前2012项的和;
(3)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由.

查看答案和解析>>

设等比数列{an}的前n项和为Sn,已知
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

设等比数列{an}的前n项和为Sn,已知
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>


同步练习册答案