题目列表(包括答案和解析)
在棱长为的正方体中,是线段的中点,.
(1) 求证:^;
(2) 求证://平面;
(3) 求三棱锥的表面积.
【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用,得到结论,第二问中,先判定为平行四边形,然后,可知结论成立。
第三问中,是边长为的正三角形,其面积为,
因为平面,所以,
所以是直角三角形,其面积为,
同理的面积为, 面积为. 所以三棱锥的表面积为.
解: (1)证明:根据正方体的性质,
因为,
所以,又,所以,,
所以^. ………………4分
(2)证明:连接,因为,
所以为平行四边形,因此,
由于是线段的中点,所以, …………6分
因为面,平面,所以∥平面. ……………8分
(3)是边长为的正三角形,其面积为,
因为平面,所以,
所以是直角三角形,其面积为,
同理的面积为, ……………………10分
面积为. 所以三棱锥的表面积为
在棱长为的正方体中,为棱的中点.
(Ⅰ)求证:平面; (Ⅱ)求与平面所成角的余弦值.
如图,棱长为的正方体中,为中点,则直线与平面所成角的正切值为 ;若正方体的八个顶点都在同一球面上,则此球的表面积为 .
在棱长为的正方体中,分别为的中点.
(1)求直线与平面所 成 角的大小;
(2)求二面角的大小.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com