题目列表(包括答案和解析)
已知函数=.
(Ⅰ)当时,求不等式 ≥3的解集;
(Ⅱ) 若≤的解集包含,求的取值范围.
【命题意图】本题主要考查含绝对值不等式的解法,是简单题.
【解析】(Ⅰ)当时,=,
当≤2时,由≥3得,解得≤1;
当2<<3时,≥3,无解;
当≥3时,由≥3得≥3,解得≥8,
∴≥3的解集为{|≤1或≥8};
(Ⅱ) ≤,
当∈[1,2]时,==2,
∴,有条件得且,即,
故满足条件的的取值范围为[-3,0]
解关于x的不等式|2x+m|<x-m(x∈R).
本题考查含有绝对值不等式的解法.解题关键是对m进行分类讨论.
设A={x||x-1|<2},B={x|>0},则A∩B等于
A.{x|-1<x<3} B.{x|x<0或x>2}
C.{x|-1<x<0} D.{x|-1<x<0或2<x<3}
本题考查含绝对值不等式、分式不等式的解法及集合的运算.在进行集合运算时,把解集标在数轴上,借助图形可直观求解.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com