2.绝对值不等式: 查看更多

 

题目列表(包括答案和解析)

含有绝对值符号的不等式,关键是去掉绝对值符号,其主要方法有:①公式法:|x|≤a(a>0)________;|x|≥a(a>0)________;a<|x|<b(0<a<b)________;②平方法;③零点分段讨论法.

查看答案和解析>>

含有绝对值的不等式具有如下性质:|a|-|b|≤|a+b|≤________.

根据此性质,可得到以下两个推论:

推论1:|a1+a2+a3|≤________.

推论2:|a|-|b|≤|a-b|≤________.

查看答案和解析>>

设命题:函数上单调递减,命题:不等式的解集为,若为真,为假,求实数的取值范围.

【解析】先通过指数函数的单调性求出p为真命题的c的范围,再通过构造函数求绝对值函数的最值进一步求出命题q为真命题的c的范围,分p真q假与p假q真两类求出c的范围即可.

 

查看答案和解析>>

我们用符号“||”定义过一些数字概念,如实数绝对值的概念:对于a∈R,|a|=
a,a>0
0,a=0
-a,a<0
,可以证明,对任意a,b∈R,不等式|a|-|b|≤|a+b|≤|a|+|b|成立.
(1)再写出两个这类数学概念的定义及其成立的不等式;
(2)对于集合A,定义“|A|”为集合A中元素的个数,对任意的集合A、B有类似的不等式成立吗?如果有,写出一个,并指出等号成立的条件(不必说明理由);如果没有,请说明理由;
(3)设有集合A、B,若|A|=15,|B|≥15,若从A中任取两上元素,恰好都是B中元素的概率p≥
1
5
,求|A∩B|的取值范围.

查看答案和解析>>

我们用符号“||”定义过一些数字概念,如实数绝对值的概念:对于a∈R,|a|=数学公式,可以证明,对任意a,b∈R,不等式|a|-|b|≤|a+b|≤|a|+|b|成立.
(1)再写出两个这类数学概念的定义及其成立的不等式;
(2)对于集合A,定义“|A|”为集合A中元素的个数,对任意的集合A、B有类似的不等式成立吗?如果有,写出一个,并指出等号成立的条件(不必说明理由);如果没有,请说明理由;
(3)设有集合A、B,若|A|=15,|B|≥15,若从A中任取两上元素,恰好都是B中元素的概率数学公式,求|A∩B|的取值范围.

查看答案和解析>>


同步练习册答案