已知: 如图, △ABC中, ÐACB = 90°, CD^平面, AD, BD和平面所成的角分别为30°和45°, CD = h, 求: D点到直线AB的距离. 解析:1.先找出点D到直线AB的距离, 即过D点作 DE^AB, 从图形以及条件可知, 若把DE放在△ABD中不易求解. 查看更多

 

题目列表(包括答案和解析)

已知如图AB为圆O的直径,弦AC、BD交于点P,若AB=3,CD=1,则sin∠APD=________.

查看答案和解析>>

已知如图1,在梯形ABCD中,AD∥BC,∠ABC=
π2
,AB=BC=2AD=2,E、F分别是线段AB、CD上的动点且EF∥BC,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD丄平面EBCF (如图2).
精英家教网
(1)当AE为何值时,有BD丄EG?
(2)设AE=x,以F、B、C、D为顶点的三梭锥的体积记为f(x),求f(x)的最大值;并求此时二面角D-BF-C的余弦值.

查看答案和解析>>

(2007•崇明县一模)已知如图,直线l:x=-
p
2
(p>0),点F(
p
2
,0)
,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)当p=2时,曲线C上存在不同的两点关于直线y=kx+3对称,求实数k满足的条件(写出关系式即可);
(3)设动点M (a,0),过M且斜率为1的直线与轨迹C交于不同的两点A,B,线段AB的中垂线与x轴交于点N,当|AB|≤2p时,求△NAB面积的最大值.

查看答案和解析>>

已知如图,在长方体ABCD-A1B1C1D1中,AB=2BC=2AA1=2,点E在棱AB上移动,点F为CD1的中点.
(1)求三棱锥D1-ADC的体积;
(2)当AE为多长时,EF∥平面DA1D1?并证明你的结论;
(3)求证:A1D⊥D1E.

查看答案和解析>>

(2009•河北区二模)已知如图(1),梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分别是AB、CD上的动点,且EF∥BC,设AE=x(0<x<4).沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF,如图(2).
(Ⅰ)求证:平面ABE⊥平面ABCD;
(Ⅱ)若以B、C、D、F为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(Ⅲ)当f(x)取得最大值时,求异面直线CD和BE所成角的余弦值.

查看答案和解析>>


同步练习册答案