.如图.ABCD为正方形.过A作线段SA⊥面ABCD.又过A作与SC垂直的平面交SB.SC.SD于E.K.H.求证:E.H分别是点A在直线SB和SD上的射影. 解析: 查看更多

 

题目列表(包括答案和解析)

如图,ABCD为正方形,过A作线段SA⊥面ABCD,又过A作与SC垂直的平面交SBSCSDEKH,求证:EH分别是点A在直线SBSD上的射影.

查看答案和解析>>

精英家教网如图,已知圆O:x2+y2=1,O为坐标原点.
(1)边长为
2
的正方形ABCD的顶点A、B均在圆O上,C、D在圆O外,当点A在圆O上运动时,C点的轨迹为E.
①求轨迹E的方程;
②过轨迹E上一定点P(x0,y0)作相互垂直的两条直线l1,l2,并且使它们分别与圆O、轨迹E相交,设l1被圆O截得的弦长为a,设l2被轨迹E截得的弦长为b,求a+b的最大值.
(2)正方形ABCD的一边AB为圆O的一条弦,求线段OC长度的最值.

查看答案和解析>>

精英家教网如图,直线y=-
1
2
x+1
交坐标轴于A、B两点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E.
(1)求抛物线的解析式.
(2)若正方形以每秒
5
个单位长度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间的函数关系式,并写出自变量的取值范围.

查看答案和解析>>

如图5:正方体ABCD-A1B1C1D1,过线段BD1上一点P(P平面ACB1)作垂直于D1B的平面分别交过D1的三条棱于E、F、G.

(1)求证:平面EFG∥平面A CB1,并判断三角形类型;

(2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离.

查看答案和解析>>

如图5:正方体ABCD-A1B1C1D1,过线段BD1上一点P(P平面ACB1)作垂直于D1B的平面分别交过D1的三条棱于E、F、G.
(1)求证:平面EFG∥平面A CB1,并判断三角形类型;
(2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离.

查看答案和解析>>


同步练习册答案