如图.已知正方体ABCD-A1B1C1D1的棱长为1.E.F分别在棱AB.BC上.G在对角线BD1上.且AE=.BF=.D1G∶GB=1∶2.求平面EFG与底面ABCD所成的二面角的大小. 解析:设G在底面ABCD上的射影为H.H∈BD. ∵== ∴GH= 作HM⊥EF于M.连GM.由三垂线定理知GM⊥EF.则∠GMH=θ就是平面BFG与底面ABCD所成的二面角的平面角.tanθ=. 下面求HM的值. 建立如图所示的直角坐标系.据题设可知. H(.).E(.0).F(1.) ∴直线EF的方程为 =. 即 4x-6y-1=0. 由点到直线的距离公式可得 |HM|==. ∴tgθ=·=.θ=arctg. 说明 运用解析法来求HM的值是本例的巧妙所在. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,已知正方体ABCD-A1B1C1D1的棱长为1.P,Q分别是棱DD1,CD的中点.
(1)证明:AC1⊥平面A1BD;PQ∥平面A1BD;
(2)探究:在棱B1C1上是否存在点M,使得二面角M-BD-A1的大小为45°?若存在,则求出B1M的值;若不存在,请说明理由.

查看答案和解析>>

如图,已知正方体ABCD-A1B1C1D1的棱长为1,E、F分别为AD1、BD的中点.
(1)求证:EF∥平面B1D1C;
(2)求二面角B1-D1C-A的大小;
(3)求三棱锥B1-ACD1的体积.

查看答案和解析>>

精英家教网如图,已知正方体ABCD-A1B1C1D1的棱长为1,点P在棱BB1上运动(不含B,B1两点),求△APC1的面积S的最小值.

查看答案和解析>>

如图,已知正方体ABCD-A1B1C1D1的棱长为1,E、F分别为AD1、BD的中点.
(1)求证:EF∥平面B1D1C;
(2)求二面角B1-D1C-A的大小;
(3)求三棱锥B1-ACD1的体积.

查看答案和解析>>

如图,已知正方体ABCD-A1B1C1D1的棱长为1.P,Q分别是棱DD1,CD的中点.
(1)证明:AC1⊥平面A1BD;PQ∥平面A1BD;
(2)探究:在棱B1C1上是否存在点M,使得二面角M-BD-A1的大小为45°?若存在,则求出B1M的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案