如图9-32.△ABD和△ACD都是以D为直角顶点的直角三角形.且AD=BD=CD.∠BAC=60°.求证: 图9-32 (1)BD⊥平面ADC, (2)若H是△ABC的垂心.则H为D在平面ABC内的射影. 解析:(1)设AD=BD=CD=a.则.∵ ∠BAC=60°.∴ .由勾股定理可知.∠BDC=90°.即BD⊥DC.又∵ BD⊥AD.AD∩DC=D.∴ BD⊥平面ADC. (2)如图答9-21.要证H是D在平面ABC上的射影.只需证DH⊥平面ABD.连结HA.HB.HC.∵ H是△ABC的垂心.∴ CH⊥AB.∵ CD⊥DA.CD⊥BD.∴ CD⊥平面ABD.∴ CD⊥AB.∵ CH∩CD=C.∴ AB⊥平面DCH. ∵ DH平面DCH.∴ AB⊥DH.即DH⊥AB.同理DH⊥BC.∵ AB∩BC=B.∴ DH⊥平面ABC. 查看更多

 

题目列表(包括答案和解析)

如图9-44,以等腰直角三角形的斜边BC上的高AD为折痕,使△ABD和△ACD折成相垂直的两个面.求证:BDCD,∠BAC=60°.

图9-44

查看答案和解析>>

如图,已知△ABD是等腰直角三角形,∠D=90°,BD=
2
.现将△ABD沿斜边的中线DC折起,使二面角A-DC-B为直二面角,E是线段AD的中点,F是线段AC上的一个动点(不包括A).
(1)确定F的位置,使得平面ABD⊥平面BEF;
(2)当直线BD与直线EF所成的角为60°时,求证:平面ABD⊥平面BEF.
精英家教网

查看答案和解析>>

(2012•福建模拟)在直角梯形ABCD中,AD∥BC,BC=2AD=2AB=2
2
,∠ABC=90°,如图1.把△ABD沿BD翻折,使得平面ABD⊥平面BCD,如图2.
(Ⅰ)求证:CD⊥AB;
(Ⅱ)若点M为线段BC中点,求点M到平面ACD的距离;
(Ⅲ)在线段BC上是否存在点N,使得AN与平面ACD所成角为60°?若存在,求出
BN
BC
的值;若不存在,说明理由.

查看答案和解析>>

(2012•福建模拟)在直角梯形ABCD中,AD∥BC,AB=1,AD=
3
,AB⊥BC,CD⊥BD,如图1.把△ABD沿BD翻折,使得平面A′BD⊥平面BCD,如图2.

(Ⅰ)求证:CD⊥A′B;
(Ⅱ)求三棱锥A′-BDC的体积;
(Ⅲ)在线段BC上是否存在点N,使得A′N⊥BD?若存在,请求出
BN
BC
的值;若不存在,请说明理由.

查看答案和解析>>

(2013•许昌二模)在直角梯形ABCD中,AD∥BC,AB=1,AD=
3
,AB⊥BC,CD⊥BD,如图1,把△ABD沿BD翻折,使得平面A'BD⊥平面BCD,如图2.
(Ⅰ)求证:CD⊥A'B;
(Ⅱ)求三棱锥A'-BDC的体积.

查看答案和解析>>


同步练习册答案