已知直三棱柱ABC-A1B1C1中.∠ACB=900.∠BAC=300.BC=1.AA1=.M为CC1中点.求证:AB1⊥A1M. 解析:因结论是线线垂直.可考虑用三垂线定理或逆定理 ∵ ∠ACB=900 ∴ ∠A1C1B1=900 即B1C1⊥C1A1 又由CC1⊥平面A1B1C1得:CC1⊥B1C1 ∴ B1C1⊥平面AA1C1C ∴ AC1为AB1在平面AA1C1C的射影 由三垂线定理.下证AC1⊥A1M即可 在矩形AA1C1C中.AC=A1C1=.AA1=CC1= ∵ . ∴ ∴ Rt△A1C1M∽Rt△AA1C1 ∴ ∠1=∠2 又∠2+∠3=900 ∴ ∠1+∠3=900­ ∴ AC1⊥A1M ∴ AB1⊥A1M 评注:利用三垂线定理的关键是找到基本面后找平面的垂线 查看更多

 

题目列表(包括答案和解析)

如图所示,已知直三棱柱ABC-A′B′C′,AC=AB=AA′=2,AC,AB,AA′两两垂直,E,F,H分别是AC,AB,BC的中点,
(I)证明:EF⊥AH;    
(II)求四面体E-FAH的体积.

查看答案和解析>>

如图所示,已知直三棱柱ABC–A′B′C′,AC =AB =AA,=2,AC,AB,AA′两两垂直,  E,F,H分别是AC,AB,BC的中点, 

(I)证明:EF⊥AH;   

   (II)求平面EFC与平面BB′C′所成夹角的余弦值.

 

查看答案和解析>>

如图所示,已知直三棱柱ABC–A′B′C′,AC ="AB" =AA,=2,AC,AB,AA′两两垂直,  E,F,H分别是AC,AB,BC的中点, 
(I)证明:EF⊥AH;   
(II)求平面EFC与平面BB′C′所成夹角的余弦值.

查看答案和解析>>

如图所示,已知直三棱柱ABC-A′B′C′,AC=AB=AA′=2,AC,AB,AA′两两垂直,E,F,H分别是AC,AB,BC的中点,
(I)证明:EF⊥AH;    
(II)求四面体E-FAH的体积.

查看答案和解析>>

精英家教网已知直三棱柱ABC-A1B1C1,AB=AC,F为BB1上一点,BF=BC=2,FB1=1,D为BC中点,E为线段AD上不同于A、D的任意一点,
(1)证明:EF⊥FC1
(2)若AB=
2
,是否存在点E满足EF与平面FA1C1所成角为arcsin
30
6
,若存在,求点E到平面A1C1CA的距离;若不存在,说明理由.

查看答案和解析>>


同步练习册答案