三个平面两两相交得三条交线.若有两条相交.则第三条必过交点,若有两条平行.则第三条必与之平行. 已知:α∩β=a,α∩=b, ∩α=c. 求证:要么a.b.c三线共点.要么a∥b∥c. 证明:①如图一.设a∩b=A. ∵α∩β=a. ∴aα而A∈a. ∴A∈α. 又β∩=b ∴b,而A∈b. ∴A∈. 则A∈α.A∈.那么A在α.的交线c上. 从而a.b.c三线共点. ②如图二.若a∥b.显然c.b ∴ a∥ 而 aα, α∩=c. ∴ a∥c 从而 a∥b∥c 查看更多

 

题目列表(包括答案和解析)

三个平面两两相交得三条交线,若有两条相交,则第三条必过交点;若有两条平行,则第三条必与之平行.

已知:α∩β=a,α∩=b,∩α=c.

求证:要么a、b、c三线共点,要么a∥b∥c.

查看答案和解析>>

如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,

OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交

于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.

(1)求经过B、E、C三点的抛物线的解析式;

(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件

的点P的坐标;若不存在,请说明理由;

(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成

为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

 

查看答案和解析>>

如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,
OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交
于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.

(1)求经过B、E、C三点的抛物线的解析式;
(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件
的点P的坐标;若不存在,请说明理由;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成
为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>

如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,
OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交
于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.

(1)求经过B、E、C三点的抛物线的解析式;
(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件
的点P的坐标;若不存在,请说明理由;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成
为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>

给出下列四个命题:①平行于母线的平面截圆锥,截面是等腰三角形;②圆柱是将矩形旋转一周所得的几何体;③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行;④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线,其中假命题的个数是(  )

查看答案和解析>>


同步练习册答案