证明:过平面上一点而与这平面的一条平行线平行的直线.在这平面上. 证明 如图.设直线a∥平面α.点A∈α,A∈直线b,b∥a.欲证bα.事实上.∵b∥a.可确定平面β.β与α有公共点A.∴α.B交于过A的直线c.∵a∥α,∴a∥c.从而在β上有三条直线.其中b.c均过点A且都与a平行.于是b.c重合.即bα. 查看更多

 

题目列表(包括答案和解析)

证明:过平面上一点而与这平面的一条平行线平行的直线,在这平面上.

查看答案和解析>>

如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.

(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);

(2)设直线有公共点,求证,进而证明原点不是“C1—C2型点”;

(3)求证:圆内的点都不是“C1—C2型点”.

 

查看答案和解析>>

如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.

(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线有公共点,求证,进而证明原点不是“C1—C2型点”;
(3)求证:圆内的点都不是“C1—C2型点”.

查看答案和解析>>

(2013•上海)如图,已知双曲线C1
x2
2
-y2=1
,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1-C2型点”
(1)在正确证明C1的左焦点是“C1-C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”;
(3)求证:圆x2+y2=
1
2
内的点都不是“C1-C2型点”

查看答案和解析>>

(2013·上海高考)如图,已知双曲线C1-y2=1,曲线C2:|y|=|x|+1.P是平面内一点.若存在过点P的直线与C1,C2都有共同点,则称P为“C1-C2型点”.

(1)在正确证明C1的左焦点是“C1-C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证).
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”.
(3)求证:圆x2+y2=内的点都不是“C1-C2型点”.

查看答案和解析>>


同步练习册答案