M.N分别是空间四边形ABCD中AB.CD中点.求证:MN<. 证明:取AC中点P.则MP=BC.NP=AD ∴ MN<MP+NP= 查看更多

 

题目列表(包括答案和解析)

M、N分别是空间四边形ABCD中AB、CD中点,求证:MN<(AD+BC).

查看答案和解析>>

空间四边形ABCD中,AC与BD成600角,AC=8,BD=8,M、N分别为AB、CD的中点,则线段MN的长是
4或4
3
4或4
3

查看答案和解析>>

在空间四边形ABCD中,AB=CD=8,M、N分别是BD、AC的中点,若异面直线AB与CD所成角为60°,则MN=_________.

查看答案和解析>>

空间四边形ABCD中,M 、N分别是AD、BC的中点.求证:  AB+CD>2MN

 

查看答案和解析>>

空间四边形ABCD中,AC与BD成60角,AC=8,BD=8,M、N分别为AB、CD的中点,则线段MN的长是   

查看答案和解析>>


同步练习册答案